رسالة ماجستير في كلية علوم الحاسوب والرياضيات تناقش : (approximate solutions of some random differential equation)

نوقشت اليوم الخميس الموافق 24-4-2025في كلية علوم الحاسوب والرياضيات / قسم علوم الرياضيات / رسالة ماجستير للباحث (علي سامي عبدالله ) الموسومة:

(approximate solutions of some random differential equation)

بإشراف (م.د. اسراء حبيب كامل)

هذا وقد جاء في مستخلص الدراسة ما يلي:

          تعتبر المعادلات التفاضلية الحل الرئيسي للتطبيق لمختلف المشاكل ليس فقط في الرياضيات ولكن أيضًا في العديد من فروع العلوم. تُستخدم المعادلات التفاضلية في العديد من المجالات المختلفة؛ ولهذا السبب، أصبحت هذه المعادلات مهمة جدًا لتنفيذ العديد من التقريبات العددية. يُفضل استخدام طريقة رونج-كوتا عندما يكون من المرغوب فيه حل نماذج معقدة تحليليًا من خلال تطبيق التقنيات الرياضية الأساسية.

          في هذه الرسالة، تمت دراسة الطرق العددية أويلر ورونج كوتا للمعادلات التفاضلية العشوائية بمعنى حساب متوسط ​​المربعات. من أجل الوضوح، تم تقديم طريقة أويلر القياسية أولاً ثم تم توسيعها إلى إعداد المصفوفة. لذلك، يهدف هذا العمل إلى تقديم العديد من الأمثلة، العددية بشكل أساسي، والتي توضح كيف يمكن الحصول على حلول تقريبية لمعادلات تفاضلية معينة ذات شروط أولية باستخدام منهجية طرق رونج كوتا وأويلر العشوائية. قدمت الدراسة أيضًا تقريب عددي للمعادلات التفاضلية بالعشوائية والتقارب وتطبيقاتها. في الفصل الأخير، تم تطبيق كلتا الطريقتين العدديتين لدراسة دائرة كهربائية ذات ضوضاء عشوائية.

   تألفت لجنة المناقشة من السادة:

1. أ.د . مزعل حمد ذاوي /​جامعة تكريت/ كلية علوم الحاسوب والرياضيات          رئيساً

2. أ.م. د. أزهر عباس محمد/​جامعة تكريت/ كلية علوم الحاسوب والرياضيات                           عضواً

3. أ.م. عوني محمد كفطان   /جامعة تكريت/ كلية الإدارة والاقتصاد                 عضواً

4. م.د. اسراء حبيب خليل ​/ جامعة تكريت/ كلية علوم الحاسوب والرياضيات   عضواً ومشرفاً

هذا وقد حضر المناقشة عدد من التدريسيين وطلبة الدراسات العليا في الكلية .

رسالة ماجستير في كلية علوم الحاسوب والرياضيات تناقش (study on modular spaces and-t modular spaces)

نوقشت اليوم الثلاثاء الموافق 22-4-2025 في كلية علوم الحاسوب والرياضيات / قسم علوم الرياضيات   / رسالة ماجستير للباحثة (صفا شاكر محمود ) الموسومة:

(study on modular spaces and-t modular spaces)

بإشراف (أ. د. ليث خليل شاكر   )

هذا وقد جاء في مستخلص الدراسة ما يلي:

   بدأت دراستنا بأخذ التعاريف لدالة الموديولر (modular) ودالة الموديولر المحدبة من النوع 5 مع الخصائص الأساسية لكل دالة منهما وكذلك العديد من المفاهيم المتعلقة بهما النتائج الأساسية من هذه الرسالة تتمثل بوضع تعاريف تربط بين فضاءات موديولر والفضاءات المعيارية (normed spaces) سميت هذه الدوال بدالة المويويلي الخطية المقيدة ودالة موديولر لبيشت على التوالي وبرهنا بأن كل دالة موديولر خطية مقيدة هي دالة موديولر لبيشتر والعكس صحيح ايضاً اذا كانت الدالة خطية بالأضافة الى ماتم ذكره سابقا لقد وضعنا دراسة جديدة سميت ب فضاءات - موديولر حيث تم تعريف دالة موديولر وإعطاء مثال يحقق التعريف وكذلك درسنا خصائص هذه الدالة وعلاقتها بالفضاء المعياري F . بعد ذلك عرفنا دالة الموديولر من النوع s، وبرهنا مجموعة من الخصائص المتعلقة بها وحصلنا على نتائج مثيرة للاهتمام حول علاقة هذه الداله مع الدالة المعيارية من النوع s. وأخيرا التعاريف لدالة موديولر الخطية المقيدة ودالة موديولر ليبشتر التي تم تعميمها إلى فضاءات t-موليدر .

تألفت لجنة المناقشة من السادة:

1. أ .د. حسن حسين إبراهيم        كلية علوم الحاسوب والرياضيات   / جامعة تكريت   /  رئيساً

2. أ.د. اكرم سالم محمد             كلية علوم الحاسوب والرياضيات / جامعة تكريت / عضواَ

3. أ.د. فاطمة محمود محمد         كلية التربية للعوم الصرفة      / جامعة تكريت / عضواً

4. أ.د. ليث خليل شاكر           كلية علوم الحاسوب والرياضيات / جامعة تكريت / عضواً ومشرفاً

هذا وقد حضر المناقشة الأستاذ المساعد الدكتور محمود ماهر صالح المحترم عميد الكلية و عدد من التدريسيين وطلبة الدراسات العليا .

كلية علوم الحاسوب والرياضيات تناقش ملخص أطروحة طالب الدكتوراه (الاسبيرانتوا) من جامعة تيومين الروسية، الموسومة: “تصميم نظام أمن للرعاية الصحية في العراق

نظّمت كلية علوم الحاسوب والرياضيات اليوم الخميس الموافق 10-4-2025 جلسة علمية خاصة لمناقشة ملخص أطروحة طالب الدكتوراه (الاسبيرانتوا)،في علوم الحاسوب ( حيدر جبار جوادة) الدارس في جامعة تيومين الحكومية الروسية (University of Tyumen)، وذلك في موضوع يُعد من القضايا الحيوية في عالم التكنولوجيا والقطاع الصحي تحت عنوان: “تصميم نظام أمن للرعاية الصحية في العراق”.

وتُعد هذه الجلسة العلمية هي الأولى من نوعها في الكلية، إذ تأتي في إطار تعزيز الانفتاح الأكاديمي الدولي والتفاعل مع الجامعات العالمية، خاصة في ما يتعلق بالأبحاث المشتركة في مجالات الأمن السيبراني وتكنولوجيا المعلومات الصحية.
واستعرض الطالب خلال المناقشة الملامح العامة لأطروحته، التي تهدف إلى تصميم نظام أمني متطور لحماية بيانات ومعلومات المؤسسات الصحية في العراق، من خلال دمج تقنيات التشفير والتحقق من الهوية وتحليل التهديدات السيبرانية، بما يضمن سرية البيانات وسلامتها، ويعزز كفاءة أنظمة الرعاية الصحية الرقمية في البلاد.

وقد حضر الجلسة عدد من الأساتذة المتخصصين وطلبة الدراسات العليا، حيث أشاد الحضور بأهمية الموضوع وارتباطه المباشر بالتحولات الرقمية التي يشهدها قطاع الصحة في العراق، خاصة في ظل التحديات المتعلقة بأمن المعلومات والخصوصية.
من جانبه عبّر الطالب عن شكره وامتنانه لإتاحة الفرصة لمناقشة ملخص أطروحته أمام نخبة من الأكاديميين المتخصصين في بلده الأم، مؤكداً أن هذه الخطوة تمثل حافزاً كبيراً له للاستمرار في تطوير المشروع البحثي بالتعاون مع المؤسسات العراقية.
وتأتي هذه الفعالية ضمن خطة الكلية لدعم الكفاءات العراقية في الخارج، وتعزيز التواصل العلمي مع الباحثين في الجامعات العالمية، بما يسهم في رفع مستوى البحث العلمي وربط نتائجه باحتياجات المجتمع العراقي .
وقد تألفت لجنة المناقشة من السادة :
1. أ.د . علي مكي صغير /جامعة الانبار / كلية علوم الحاسبات وتكنولوجيا المعلومات / رئيساً .
2. أ.د. مشاري عايد عسكر/ جامعة تكريت / كلية علوم الحاسوب والرياضيات / عضواً .
3. أ.م.د . محمود ماهر صالح / جامعة تكريت / كلية علوم الحاسوب والرياضيات / عضواً .
4. أ.م.د.محمد اكثم احمد / جامعة تكريت / كلية علوم الحاسوب والرياضيات/ عضواً
5. أ.م.د. ماجد حامد علي / جامعة تكريت / كلية علوم الحاسوب والرياضيات / عضواً .
6. أ.م.د.ميثم مصطفى حمود / جامعة تكريت / كلية علوم الحاسوب والرياضيات / عضواً ومشرفاً.
هذا وقد حضر المناقشة عدد من التدريسيين وطلبة الدراسات العليا .
من جانبه قدم السيد عميد الكلية الاستاذ المساعد الدكتور محمود ماهر صالح المتحرم كتاب شكر وتقدير للدكتور علي مكي صغير تثميناً لجهوده العلمية المميزة في رئاسة لجنة المناقشة .

أطروحة دكتوراه في كلية علوم الحاسوب والرياضيات تناقش : (EAP-prim submodules and related concepts)

نوقشت اليوم الخميس الموافق 13-3-2025في كلية علوم الحاسوب والرياضيات / قسم علوم الرياضيات / أطروحة دكتوراه للباحث (ثائر زيدان خليف ) الموسومة:

(EAP-prim submodules and related concepts )

بإشراف (أ.د.هيبة كريم محمد علي و أ.د. اكرم سالم محمد)

هذا وقد جاء في مستخلص الدراسة ما يلي:

قدمنا في هذه الاطروحة مفهوم المقاس الجزئي الاولي من النمط – EAP  كأعمام لمفهوم المقاس الجزئي الاولي من النمط –Endo  و كمفهوم قوي للمقاس الجزئي الاولي المتقارب حيث انه يدعى المقاس الجزئي الفعلي  من المقاس   بأنه مقاس جزئي اولي من النمط – Endo فيما أذا  حيث ان  و   يؤدي الى أما  أو      .

وتم دراسة مفهوم المقاس الجزئي الاولي من النمط – EAP بشكل مفصل و أعطينا العديد من الخواص الاساسية و الامثلة و المكافئات لهذا المفهوم.

الهدف الرئيسي لغرض كتابة هذه الاطروحة هو ما يلي:-

  • قمنا بدراسة شاملة لمفهوم المقاسات الجزئية الاولية المتقاربة و تعميماتها كالمقاسات الجزئية شبة متقاربة , المقاسات الجزئية الجوهرية المتقاربة و المقاسات الجزئية الابتدائية المتقاربة . واعطاء بعض النتائج الجديدة و الامثلة و المكافئات لهذه المفاهيم.
  • عممنا المقاس الجزئي الاولي من النمط – EAP مع المقاسات الجزئية ( شبة الاولية , الجوهرية , الابتدائية ) من النمط – EAP وتم إعطاء العديد من الصفات الاساسية , الامثلة و المكافئات لهذه التعميمات.
  • تم دراسة العلاقات الشكلية بين المقاسات الجزئية من النمط – Endo والمقاسات الجزئية (الاولية , الشبة اولية , الجوهرية , الابتدائية ) المتقاربة و وضحنا هذه العلاقات بمخطط.
  • كذلك تم دراسة العلاقة بين المقاسات الجزئية الاولية من النمط – Endo والمقاسات الجزئية ( الاولية , شبة الاولية , الجوهرية و الابتدائية) من النمط – EAP ووضحنا هذه العلاقة الشكلية بواسطة مخطط.
  • بالإضافة الى ذلك درسنا العلاقة الشكلية بين مفهوم المقاسات الجزئية الاولية من النمط – EAP مع المقاسات الجزئية ( شبة الاولية , الجوهرية و الابتدائية ) من النمط – EAP و كذلك علاقتهما بالمقاسات الجزئية (الاولية , شبة الاولية , الجوهرية , الابتدائية ) المتقاربة.
  • و أخيراً تحت شروط معينة عكسنا العبارات المنطقية للمفاهيم اعلاه.
  • نشير هنا في هذا العمل ان الحلقة هي حلقه ابداليه بمحايد و  مقاساً احادياً أيسراً على الحلقة

تألفت لجنة المناقشة من السادة:

1. أ.د . حسن حسين إبراهيم  /​جامعة تكريت/ كلية علوم الحاسوب والرياضيات          رئيساً

2. أ. د. سنان عمر إبراهيم  ​/ جامعة تكريت / كلية التربية للعلوم الصرفة                عضواً

3. أ.د. نبيل عزالدين عارف   /جامعة تكريت/ كلية علوم الحاسوب والرياضيات        عضواً

4. أ.د. ليث خليل شاكر  ​/ جامعة تكريت/ كلية علوم الحاسوب والرياضيات       عضواً

5.أ.د. حسام قاسم محمد  / جامعة الموصل/ كلية علوم الحاسوب والرياضيات       عضواً

6.أ.د. هيبة كريم محمد علي/ جامعة تكريت/ كلية علوم الحاسوب والرياضيات        عضواً ومشرفاً

7. أ.د. اكرم سالم محمد / جامعة تكريت / كلية علوم الحاسوب والرياضيات عضواً ومشرفاً

هذا وقد حضر المناقشة الأستاذ المساعد الدكتور محمود ماهر صالح المحترم عميد كلية علوم الحاسوب والرياضيات، وعدد من التدريسيين وطلبة الدراسات العليا في الكلية، من جانبه قدمت كلية علوم الحاسوب والرياضيات كتاب شكر وتقدير للدكتور حسام قاسم محمد قدمه الأستاذ الدكتور حسن حسين إبراهيم المحترم مساعد رئيس الجامعة للشؤون العلمية تثميناً لجهوده العلمية في تقييم هذه الرسالة .

أطروحة دكتوراه في كلية علوم الحاسوب والرياضيات تناقش : (Fuzzy Variational Calculus and its Application for Free and Moving Boundary Value Problems)

نوقشت اليوم الخميس الموافق 27-2-2025في كلية علوم الحاسوب والرياضيات / قسم علوم الرياضيات / أطروحة دكتوراه للباحث (سنان هاتف عبد المجيد ) الموسومة:

(Fuzzy Variational Calculus and its Application for Free and Moving Boundary Value Problems)

بإشراف (أ.د. فاضل صبحي فاضل)

هذا وقد جاء في مستخلص الدراسة ما يلي:

تهدف هذه الأطروحة إلى تطوير حل تحليلي تقريبي لمشاكل القيمة الحدية المتحركة باستخدام نهج التباين الضبابي. لتحقيق هذه الغاية، سنقوم بصياغة النموذج الرياضي لمثل هذه المشاكل كنموذج رياضي ضبابي، مع دمج مفهوم المنطق الضبابي وقابلية التفاضل لهوكوهارا وتحليل الفاصل الضبابي. سيمكننا هذا النهج من استنباط حلول تحليلية وتقريبية للمشكلة.

هذه الأطروحة لها ثلاثة أهداف رئيسية. الهدف الأول هو استنباط شروط أويلر-لاجرانج الضبابية الضرورية باستخدام أساليب التباين الأول ومشتقة جاتو لصياغة معادلات أويلر-لاجرانج لكل من مشاكل التباين الضبابي البسيطة والمعممة، بما في ذلك تلك التي تحتوي على مشتقات من الدرجة الأعلى ومتغيرات مستقلة متعددة باستخدام قابلية التفاضل لهوكوهارا المعممة بالإضافة إلى فترات ضبط المستوى α.

الهدف الثاني هو تقديم ودراسة مشاكل قيمة الحدود المتحركة الضبابية الفاصلة، حيث ترتبط صياغات هذه المشكلة بظواهر الحياة الواقعية بسبب الصياغة غير الدقيقة و/أو قراءة البيانات المشوشة. يتم اعتبار التطبيق المحمول لمشكلة قيمة الحدود المتحركة مشكلة قيمة حدود حوض المحيط الرسوبي عند اعتبار معامل الانتشار غير دقيق، والتي يتم التعامل معها من خلال تعريف الأرقام الضبابية المثلثية فيما يتعلق بمجموعات المستويات، باستخدام طريقة التكرار المتغير الضبابي.

الهدف الثالث من هذه الأطروحة هو تقديم وتحليل نهج حساب التباين الضبابي الفاصل لمشاكل حوض المحيط الرسوبي. بعد ذلك، يتم استخدام طريقة ريتز المباشرة لإيجاد الحلول التقريبية الدنيا والعليا للمشكلة.

تستخدم الأطروحة برنامج الكمبيوتر Mathematica 11 للحصول على نتائج حسابية وإنشاء الرسوم البيانية والجداول.

   تألفت لجنة المناقشة من السادة:

1. أ.د . مزعل حمد ذاوي /​جامعة تكريت/ كلية علوم الحاسوب والرياضيات          رئيساً

2. أ. د. أسامة حميد محمد ​/ جامعة النهرين / كلية العلوم                                عضواً

3. أ.د. رعد عواد حميد   /جامعة تكريت/ كلية التربية للعلوم الصرفة                 عضواً

4. أ.د. نزار خلف حسين ​/ جامعة تكريت/ كلية علوم الحاسوب والرياضيات       عضواً

5.أ.د. فراس عادل فوزي / جامعة تكريت/ كلية علوم الحاسوب والرياضيات       عضواً

6.أ.د. فاضل صبحي فاضل/ جامعة النهرين / كلية العلوم                       عضواً ومشرفاً

هذا وقد حضر المناقشة الأستاذ الدكتور حسن حسين إبراهيم مساعد رئيس الجامعة للشؤون العلمية و الأستاذ المساعد الدكتور محمود ماهر صالح المحترم عميد كلية علوم الحاسوب والرياضيات، وعدد من التدريسيين وطلبة الدراسات العليا في الكلية، من جانبه قدم السيد عميد الكلية كتابي شكر وتقدير للدكتور أسامة حميد محمد و الدكتور فاضل صبحي فاضل تثميناً لجهوده العلمية في تقييم هذه الرسالة .