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ABSTRACT 
  This work focuses on computing and determining degree-based 

topological indices and its polynomial for various dendrimer including. The 

classical ones like the newer ones the Augmented Zagreb,1st and 2nd 

Reformulated Zagreb, Edge Irregularity, and Degree Edge Stability indices 

are taken into consideration. Dendrimers like porphyrin (𝐷𝑛, 𝑃𝑛), Propyl Ether 

Imine dendrimers (PETIM), Zinc Porphyrin dendrimers ( 𝐷𝑃𝑍𝑛)  Poly 

(Ethylene Amide Amine) (PETAA), aminoisophthalate diester monomer 

(APD[n]) and Poly (amid amine) (PD[n]) dendrimers. The study also 

illustrates the difference between the Augmented Zagreb and Edge 

Irregularity indices, obtaining new upper and lower bounds for them. Results 

verify the predictive behavior of topological indices for molecular structure 

and activity. 
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INTRODUCTION 

         Graph theory is a mathematical area dealing with structures composed 

of vertices (also called nodes) and edges that connect them. The structures, 

also called as graphs, are frequently used to represent linkages and interactions 

in a variety of domains, including biology, computer science, chemistry, and 

social networking. A chemist uses graph theory to represent molecular 

structures, with the atoms as vertices and the chemical bonds as edges. This 

approach makes it possible to calculate topological indices, which are 

numerical values derived from a graph that can be applied to estimate physical 

and chemical molecule properties. If a graph doesn’t include any edges 

between the vertices, then it’s called a null graph. [1]. 

       The ordered pair (V(G), E(G)) can be used to represent the graph, where 

(V(G)) represents the set of vertices of G and each element inside (V(G)) is 

called a vertex or node. Likewise, the set of edges of G is represented by 

(E(G). Chemical graph theory has provided researchers in chemistry with a 

wide range of very potent analysis methods. In this situation, a molecular 

graph provides a graphical representation of a chemical structure using 

concepts from graph theory. In these models, the compound's elements are 

represented by nodes, while connections depict the interactions among them. 

This is the topological subfield of mathematical chemistry where graph theory 

is employed to describe and analyze chemical behaviors and structural 

properties mathematically. [2]. 

          Alexandru Balaban, Ante Groovac, Ivan Gutman, Haruo Hosoya, Milan 

Randić, and Nenad Trinajstić, among others, are considered pioneers in the 

field of chemical graph theory. It was reported in 1988 that a large number of 

researchers were working in this area, producing approximately 500 articles 
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per year. There have been several monographs that was published in this field, 

such as Triassic's two-volume work "Chemical Graph Theory," which 

provided a concise overview of the discipline up until the middle of the 1980s, 

[3-4]. 

            In terms of mathematics, an undirected graph is called a molecular 

graph. G = (S, V), where S is a non-empty set of atom and V is a set of bound. 

Let s∈S is an element of the molecular structure of every vertex, and the vertex 

degree is the number of edges it has. Molecular graph structure and 

characteristics are studied based on the arrangement and degree of vertices to 

obtain various topological indices that represent the molecule's behavior and 

properties. A typical example of such indices was provided by Trinajstić et al. 

in their work, which discussed π-electron energy in relation to the branching 

of molecules. Two traditional indices were given by them as follows: 

𝑀1= ∑ 𝑑(𝑠)2
𝑠∈𝑆          and          𝑀1= ∑ 𝑑(𝑠). 𝑑(𝑣) 𝑠𝑣∈𝐸 . 

Where d(s) is the degree of vertex s. These indices quantify the branching 

degree in molecular structures, the larger values tending to be associated with 

more complex molecular structures and smaller total π-electron energy. 

             Generalizing from graph theory, many other degree-based topological 

indices have been constructed to characterize other structural features of 

chemical graphs. These include the Augmented Zagreb Index (AZI), which 

gives more weight to molecular branching, the First and Second Reformulated 

Zagreb Indices (Re1 and Re2), which provide edge degree-based 

reformulations rather than vertex degree formulations, and the Edge 

Irregularity Index, which measures the imbalance in degrees of adjacent 

vertices. Additionally, the Degree-Based Stability Index is applied to assess 
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structural stability of molecules according to the vertex degree distribution 

[5]. 

           A topological indices of a graph, it’s a quantitative parameter about G 

that represents its molecular topology by encoding necessary structural 

features of the graph. Indices are graph operations invariant, e.g., relabeling 

vertices, reordering edges, or isomorphism, in such a way that the numerical 

value describes intrinsic properties of the molecular structure and not arbitrary 

representations. Topological indices are thus very useful in drug design, 

material science, and molecular chemistry. We are concerned here to compute 

some important topological indices of some chemical structures so that we 

can know their structural features and potential chemical properties. [6]. 

             Graph polynomials are algebraic polynomials on graphs that 

compactly embody important structural information. Graph polynomials, as 

studied in graph theory and discrete mathematics, are valuable tools for the 

study of the complexity, connectedness, and symmetry of molecular graphs. 

More specifically, in this thesis, graph polynomials are employed to study 

molecular graphs of compounds like porphyrin, propyl ether imine, zinc 

porphyrin, and ethylene amide amine dendrimers. These molecules have 

intricate architectures that are nicely modeled by graph polynomials, which 

enables us to calculate topological invariants to predict their chemical 

behavior, stability, and potential applications in materials science and 

medicine. [7]. 

            In (2010) B. Furtula, A. Graovac, and D. Vukičević. In (2015) F. Zhan, 

Y. Qiao, and J. Cai. And in (2016) N. Idrees, A. Sadiq, M. J. Saif, and A. Rauf 

, [8-10], define Augmented Zagreb Index (AZI) as a means to improve the 

predictive power of classical Zagreb indices, particularly for molecular 
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branching and thermodynamic properties. It employs a more sophisticated 

degree-based weighting function, which has made it particularly appealing for 

highly branched systems, such as dendrimers.For poly(propylene imine) (PPI) 

and poly(amidoamine) (PAMAM) dendrimers. In (2013) V. R. Kulli and I. 

Gutman  .  In (2017) N. De . In (2024) S. Anwar et.al . In (2014) S. Ji, X. Li, 

and Y. Qu, and in (2013) I. Gutman, B. Furtula, and V. R. Kulli. [11-15] 

introduced the result for the Reformulated Zagreb Indices, to generalize the 

traditional Zagreb indices considering the edge degrees instead of vertex 

egrees. They are more responsive to connectivity alterations in graphs and 

thus appropriately usable for complex ierarchical architectures like 

dendrimers. for the PAMAM dendrimer and the polyetherimide (PETIM) 

dendrimer.  

In (2015) H. S. Abdo and D. M. Dimitrov, In (2024) M. Imran, and in 

(2018) I. Gutman and H. Abdo, [16-18], introduced the Edge Irregularity 

Index to quantify structural heterogeneity in terms of degree differences 

among neighboring vertices. The index has found broad use to characterize 

dendritic macromolecules, with irregular structures often occurring in higher 

generations.  

In (2012) J. Chen, S. Li, and W. Wang, In (2017) N. De, et.al., In (2019) 

L. Yousefi-Azari, M. Saheli, and M. Azari. [19-21] introduced the Degree-

Based Stability Index to measure molecular stability based on vertex degree 

distributions. It has been helpful for understanding thermodynamic stability 

in arborescent and hyperbranched dendrimers. In (2005) D.A. Tomalia and 

J.M. Jansen. developed, in the late 1980s, Polypropylenimine (PPI) 

dendrimers that possess a diaminobutane (DAB) core and tertiary amine 

branching units. PPI dendrimers are highly defined in their molecular 
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architecture and are used extensively in gene delivery and nanomedicine 

because of their appropriate surface functionalities and biocompatibility, 

[22].In (2008) S. Kulhari, PETIM dendrimers were introduced in the early 

2000s as a dendrimer family possessing ether and imine linkages. They are 

appealing due to their improved solubility in organic solvents and reduced 

cytotoxicity, making them suitable for use in biomedical and pharmaceutical 

applications. They are comparatively easy to synthesize compared to other 

dendrimer families. [23].  

In (1998) G.R. Newkome, Zinc porphyrin dendrimers entrap porphyrin 

macrocycles with a zinc metal ion in the center, enabling them to have unique 

photochemical and electrochemical properties. The dendrimers that became 

popular during the 1990s are widely used in light-harvesting systems, 

photodynamic therapy, and solar energy conversion, [24]. In (1985) D.A. 

Tomalia, One of the most well studied and oldest dendrimers are PAMAM 

dendrimers, which were originally synthesized by Tomalia. they synthesized 

via a divergent growth strategy and are noted for their ethylenediamine core 

and iteratively repeated amide and amine branching. PAMAM dendrimers 

have extensive use in drug and gene delivery, diagnostics, and 

nanotechnology, [25]. In (1996) A. Harriman, Porphyrin-dendrimers are 

designed by placing porphyrin units at the periphery or core of the dendrimer 

system. Porphyrin-dendrimers are of interest for optoelectronics, 

photodynamic therapy, and catalysis due to the photo absorbing and redox 

activity of porphyrins. [26]. In (2016) Che, Z., & Chen, Z , define Lower and 

Upper Bounds of the Forgotten Topological Index, [27]. In (2020) Lin, W., 

Dimitrov, D., & Škrekovski, R.  define the maximal of the Augmented Zagreb 
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index.  In (2013) N. E. Arif and R. Hasni, define the connectivity index of 

PAMAM dendrimers, [28].  

            In (2013) N. E. Arif, studied Graph Polynomials and Topological 

Indices of Some Dendrimers, [29]. In (2016) M. N. Husin, R. Hasni, N. E. 

Arif, and M. Imran, studied On topological indices of certain families of Nano 

star dendrimers, [30]. In (2023) A. S. Majeed and N. E. Arif, studied 

topological indices of certain neutrosophic graphs. [31]     

           This thesis is divided into five chapters, chapter one has presented 

preliminary definitions of graph theory, polynomials, a topological index of 

graph and dendrimer.  

         Chapter two comprises two sections, including the computation of 

various polynomials, with their topological indices by taking it’s derivative 

for a selected dendrimer. The first division entails the computation of the first 

kind of dendrimer, (𝐷𝑛, 𝑃𝑛), which is also referred to as Porphyrin-dendrimers. 

The second section entails the computation of the second kind of dendrimer, 

(𝑃𝐸𝑇𝐼𝑀), which is referred to as Propyl Ether Imine dendrimers. 

        Chapter three is divided into two section, including the computation of 

various polynomials, with their topological indices by taking it’s derivative 

for a selected dendrimer. The first division entails the computation of the first 

kind of dendrimer, Zinc porphyrin and ethylene amide amine (𝑃𝐸𝑇𝐼𝑀) 

dendrimers respectively. 
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         Chapter four is made up of two section. including the computation of 

various polynomials, with their topological indices by taking it’s derivative 

for a selected Nano star dendrimer. aminoisophthalate diester monomer 

(APD[n]) And Poly(amidoamine) (PD[n]) in every detail. 

          Chapter five is made up of three section In the first section, the 

correlation between some topological indices is given. The second sections 

are devoted to figuring out the bottom and upper limits  

of the Augmented Zagreb index. The third sections are devoted to determining 

the lower and upper bounds of the Edge Irregularity Zagreb index. 
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Chapter One 

Basic Concepts and Preliminaries 

1.1 Preliminaries. 
Definition 1.1.1: [6] Graph (G): The adjacency relation (ℵ :V ×V→ E) 

establishes the relationship between each edge and the vertex pairs of G. 

 

 

 

 

Figure 1.1 Graph Example 

Definition1.1.2: [37] Order of (G): The order of a graph G, denoted by O(G), 

is the number of its vertices. 

Definition1.1.3: [37] Size of (G): The size of graph G, denoted by e(G), is 

the number of its edges. 

Definition 1.1.4: [35] Graph polynomial: is a way of turning the structure of 

a graph into a polynomial (an algebraic expression) that tells us useful 

information about the graph. It often includes variables related to the number 

of edges, vertices, or how they are connected.  

Definition 1.1.5: [37] Isolated vertex: a vertex with degree zero in a graph is 

said to be isolated it has no edges connecting it to any other vertex. 

Definition 1.1.6: [37] Pendant vertex: a pendant vertex, sometimes known 

as a leaf, is a vertex of degree one, which means that it has a single edge 

connecting it to precisely one other vertex. 
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Definition 1.1.7: [36] Core vertex: Is a vertex that is neither pendent nor 

isolated and also known as an intermediate vertex. 

Definition 1.1.8: [37] 1) Graph maximum: ∆(G) = max{d(v): v ∈V(G)} is 

the definition of a graph G's greatest degree, denoted as ∆(G). 

2) Graph minimum: min{d(v): v ∈ V(G)} is the definition of a graph G's least 

degree, represented by δ(G).  

3) Keep in mind that δ(G) ≤ d(v) ≤ ∆(G) for every vertex v in G. 

Theorem 1.1.9: [37] In a graph G, the sum of the degrees of the vertices is 

equal to twice the number of edges. That is, ∑ 𝑑(𝑣) = 2𝜀𝑣∈𝑉(𝐺)   

Theorem 1.1.10: [37] For any graph G, δ(G) ≤ 
2|E|  

|V|
 ≤ ∆(G). 

Theorem 1.1.11: [37] The number of vertices of odd degree in any given 

graph G is always even. 

Definition 1.1.12: [37] Loop: Is an edge in a graph that connects a node to 

itself.  

Definition 1.1.13: [37] Parallel Edges: edges that are parallel. Multiple or 

parallel edges are those that connect the same pair of vertices. 

Definition 1.1.14: [37] Simple Graph: A graph G is said to as simple if it 

lacks parallel edges and loops.  

 

 

 

Figure1.2 Some examples of simple graph. 
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Definition 1.1.15: [37] Subgraph: A graph 𝐻(𝑉1, 𝐸1) is considered to be a 

subgraph of a graph 𝐺(𝑉, 𝐸) if 𝑉1  ⊆  𝑉 𝑎𝑛𝑑 𝐸1  ⊆  𝐸.  

 

 

 

Figure1.3: Example of Subgraph 

Definition 1.1.16: [37] Spanning Subgraph: A graph 𝐻(𝑉1, 𝐸1) considered 

a spanning subgraph of a graph when 𝐺(𝑉, 𝐸) if 𝑉1 =  𝑉 and 𝐸1 ⊆  𝐸. 

Definition 1.1.17: [37] Complete Graph: Is a simple undirected graph where 

each pair of distinct vertices is joined by a distinct edge. 

 

 

Figure1.4: First few complete graphs. 

Definition 1.1.18: [37] Bipartite Graph: A graph G is said to be a bipartite 

graph if its vertex set V can be partitioned into two sets, say 𝑉1 and 𝑉2, such 

that no two vertices in the same partition can be adjacent. 

 

 

Figure 1.5: Example of Bipartite Graph. 
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Definition 1.1.19: [37] Complete Bipartite Graph: Is considered complete 

if every vertex in one partition is adjacent to every vertex. Complete bipartite 

graph with bipartition (𝑥, 𝑌)  is denoted by 𝐾|𝑥|,|𝑌| or 𝐾𝑎,𝑏 , where 𝑎 =

 |𝑥|, 𝑏 =  |𝑌|. 

 

 

 

Figure 1.6: Example of Complete Bipartite Graphs. 

Theorem 1.1.20: [37] The entire graph 𝐾𝑛 can be expressed as the union of k 

bipartite graphs, If and only if  𝑛 ≤  2𝐾. 

Definition 1.1.21: [37] Regular Graphs: Graph G is regular when its vertices 

have the same degree. Graph G is said to be a 𝑘 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph if 𝑑(s)=

 𝑘 ∀ 𝑠 ∈  𝑆(𝐺). Every complete graph is an (𝑛 − 1)-regular graph. 

 

 

 

 

Figure 1.7: Examples of Regular Graphs 

Definition 1.1.22: [37] Walk: Is any path through a graph that connects 

vertex to vertex via edges. 
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Definition 1.1.23: [37] Trails: A walk that doesn't cross the same edge over 

and over again.  

Definition 1.1.24: [37] Cycles: Is possible exception of the start vertex being 

the same as the end. 

Definition 1.1.25: [37] 1) Path: Is a walk that does not involve any vertex 

twice. Path that begins and ends at the same vertex is called a cycle. Keep in 

mind that a path with n vertices has a length of n-1. 

Definition 1.1.26: [37] Geodesic distance: The length (number of edges) of 

the shortest path (also called a graph geodesic) between two vertices s and v 

in a graph G. 

Definition 1.1.27: [37] Eccentricity of the vertex: The longest geodesic 

distance between a vertex v and any other vertices is its eccentricity, which is 

denoted by the symbol d(s). It can be conceptualized as the separation between 

a vertex and the vertex in the graph that is most distant from it.  

Definition 1.1.28: [37] Graph's Radius: The smallest eccentricity of any 

vertex in a graph G is its radius, denoted by rad(G), 𝑟𝑎𝑑(𝐺)  = min
𝑠∈𝑉(𝐺)

𝑑(𝑠) 

Definition 1.1.29: [37] Diameter of a graph: The maximum eccentricity of 

any vertex in a graph G is its diameter, denoted as diam(G), 𝑑𝑖𝑎𝑚(𝐺)  =

 max
𝑠∈𝑉(𝐺)

𝑑(𝑠). 

Definition 1.1.30: [37] Cut-Edge: A cut edge (a bridge) is an edge in a graph 

whose removal increase the number of connected components in the graph.   
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Definition 1.1.31: [37] Cut- Vertex: In a connected graph, a cut vertex (also 

known as an articulation point) is a vertex whose removal increases the 

graph's connected components. 

 

 

 

 

Figure 1.8: Disconnected graph 𝐺 − 𝑣4 

Theorem 1.1.32: [37] A cut-edge of a graph G is one that is not contained in 

any of G's cycles. 

 

 

 

 

Figure 1.9: Disconnected graph 𝐺 − 𝑣4𝑣5. 
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1.2 Topological Index: 
Introduction: A topological index is a quantity calculated from the molecular 

graph structure that characterizes the topology (connectivity) of the molecule. 

It is a graph-theoretical descriptor used very frequently in chemical graph 

theory for correlating molecular structure with chemical, physical, or 

biological activity. [36]. 

Definition 1.2.1: [30] The Augmented Zagreb Index of graph G define as: 

AZI(𝐺) =  ∑ (
d(s) ∗ d(v) 

d(s)+ d(v)−2
)

3

 sv∈E(G)  

Definition 1.2.2: [15] The 1st Reformulated Zagreb Index of graph G define 

as: 

𝑅𝑀1(𝐺) = ∑ (𝑑(𝑠) + 𝑑(𝑣) − 2)2
 sv∈E(G)  

Definition 1.2.3: [15] The 2nd Reformulated Zagreb Index of graph G define 

as: 

𝑅𝑀2(𝐺) = ∑ (𝑑(𝑠) + 𝑑(𝑣) − 2)(𝑑(𝑠) ∗ 𝑑(𝑣)) sv∈E(G)  

Definition 1.2.4: [17] The Edge Irregularity Index of graph G define as: 

 

𝐼𝑅 (𝐺) = ∑ | 𝑑(𝑠) − 𝑑(𝑣)| sv∈E(G)  

Definition 1.2.5: [19] The Degree Edge Stability Index of graph G define as: 

 

𝐷𝑆 (𝐺) = ∑ (𝑑(𝑠) − 𝑑(𝑣))2
 sv∈E(G) . 
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1.3 Graph Polynomials: 
Introduction:  Graph polynomial is a polynomial that represents information 

pertaining to the structure of a graph. It is built up from numbers or variables 

relating to the edges, vertices, or subgraphs of the graph. Graph polynomials 

are a means of expressing important properties like how a graph is connected, 

or how its components are paired. Graph polynomials are important both in 

pure mathematics as well as in applied fields like chemistry and physics. [35]. 

Definition 1.3.1: [8] The Augmented Zagreb polynomial of graph G define 

as:  

AZP  (𝐺, 𝑥) =  ∑ 𝑥
(

d(s) ∗ d(v) 

d(s)+ d(v)−2
)

3

 sv∈E(G)  

Definition 1.3.2: [14] The 1st Reformulated Zagreb polynomial of graph G 

define as: 

𝑅𝑀1(𝐺, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 sv∈E(G) . 

Definition 1.3.3: [14] The 2nd Reformulated Zagreb polynomial of graph G 

define as: 

𝑅𝑀2(𝐺, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 sv∈E(G) . 

Definition 1.3.4: [16] The Edge Irregularity Polynomial of graph G define as: 

𝐼𝑅 (𝐺, 𝑥) = ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 sv∈E(G) . 

Definition 1.3.5: [19] The Degree Edge Stability Polynomial of graph G 

define as: 

𝐷𝑆 (𝐺, 𝑥) = ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 sv∈E(G) . 
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1.4 Dendrimers: 
Dendrimers are artificially synthesized, highly branched, tree-like 

macromolecules with a core, uniform interior layers (generations), and 

terminal functional groups. Their extremely symmetrical, well-defined 

architecture provides them with a unique distinction from the traditional 

polymers and allows strict control of molecular size, shape, and functionality. 

The concept of dendrimers was first mentioned in the late 1970s and 

early 1980s. The first synthesis of dendrimers, i.e., poly (amidoamine) 

(PAMAM) dendrimers, was performed by Donald A. Tomalia and colleagues 

at Dow Chemical Company in 1985. Around the same time, independently of 

one another, Fritz Vögtle in Germany and George Newkome in the USA also 

synthesized similar dendritic architectures. Various types of dendrimers have 

been prepared over the years to serve different chemical and biomedical 

purposes. Some of them are Propyl Ether Imine (PETIM) dendrimers, by 

virtue of their solubility and biocompatibility; Zinc Porphyrin and Porphyrin-

based dendrimers, for use in photodynamic therapy and light-harvesting 

systems; Ethylene Amide Amine dendrimers, for drug delivery and molecular 

encapsulation; and Aminoisophthalate Diester Monomer-based dendrimers, 

as building blocks in the assembly of sophisticated dendritic systems. Due to 

their new structure and functional diversity, dendrimers have become of 

critical importance in fields such as drug delivery, diagnostics, 

nanotechnology, catalysis, and materials science. [39-42]. 

  



Chapter Two: Computation of Topological Indices and Polynomials of Porphyrin 

(𝑫𝒏 𝑷𝒏) and Propyl Ether Imine (𝑷𝑬𝑻𝑰𝑴) Dendrimers. 

 

18 
 

Chapter Two 

Computation of Topological Indices and Polynomials 

of Porphyrin (𝑫𝒏 𝑷𝒏) and Propyl Ether Imine 

(𝑷𝑬𝑻𝑰𝑴) Dendrimers 
 

2.1 Computation of Topological Indices and Polynomials of 

Porphyrin Dendrimer (𝑫𝒏 𝑷𝒏). 
Introduction: The topological indices are used to obtain the topological 

properties and steric structure of dendrimers or macromolecules. As has been 

said earlier throughout this chapter will deal with computing some polynomials 

for various different classes of dendrimers like porphyrin dendrimer (𝐷𝑛 𝑃𝑛) 

and  Propyl Ether Imine dendrimer (PETIM).  

Proposition 2.1.1: [41] It considered the first type of dendrimer (𝐷𝑛 𝑃𝑛) then: 

1. Order of (𝐷𝑛 𝑃𝑛) is 84 ×2n−1 −51  

2. The size of (𝐷𝑛 𝑃𝑛) is 93 × 2n−1  −57. See figure 2.1 

 

 

 

 

 

 

 

Figure 2.1: dendrimers (𝐷𝑛 𝑃𝑛) is also known as porphyrin. 
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 (𝐷𝑛 𝑃𝑛) contain six types of edges based on degree of end vertices of each as 

given in table 2.1. 

Table 2.1: Graph of the structures (𝐷𝑛 𝑃𝑛) 

(𝑑𝑠, 𝑑𝑣) (1,3) (1,4) (2,2) (2,3) (3,3) (3,4) 

No. of edges  2𝑛 24𝑛 10𝑛 − 5 48𝑛 − 6 13𝑛 8𝑛 

First of all, we are going to calculate the Augmented Zagreb polynomial for 

the molecular (𝐷𝑛 𝑃𝑛) 

Theorem 2.1.1: Let n ∈ N, then the Augmented Zagreb polynomial of 

(𝐷𝑛 𝑃𝑛) is given as : 

AZP (Dn Pn, 𝑥)  = (2𝑛) 𝑥  
27

8 + (24𝑛)𝑥
64

27  + (58𝑛 − 11)𝑥8 + (13 𝑛)𝑥
729

64 +

(8 𝑛)𝑥
1728

125 . 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define as follow. See table 2.1. 

| 𝐸1(𝐷𝑛 𝑃𝑛)| Be composed of 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸2(𝐷𝑛 𝑃𝑛)| Be composed of 24 𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸3(𝐷𝑛 𝑃𝑛)| Be composed of 10𝑛 − 5 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) =

2, where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸4(𝐷𝑛 𝑃𝑛)| Be composed of 48 𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) =

3, where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 
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| 𝐸5(𝐷𝑛 𝑃𝑛)| Be composed of 13 𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸6(𝐷𝑛 𝑃𝑛)| Be composed of 8 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

AZP (Dn Pn , 𝑥)  = ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸4(𝐺) +

∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸5(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸6(𝐺)  

= (2𝑛) 𝑥(
1∗3

1+3−2
)3

+ (24𝑛) 𝑥(
1∗4

1+4−2
)3

+ (10𝑛 − 5) 𝑥(
2∗2

2+2−2
)3

+ (48𝑛 −

6) 𝑥(
2∗3

2+3−2
)3

+ (13𝑛) 𝑥(
3∗3

3+3−2
)3

+ (8𝑛) 𝑥(
3∗4

3+4−2
)3

 

AZP(Dn Pn, 𝑥) =  (2𝑛)𝑥  
27

8 + (24𝑛)𝑥
64

27  + (58𝑛 − 11)𝑥8 + (13𝑛)𝑥
729

64  

+(8𝑛)𝑥
1728

125 . 

Corollary 2.1.1: [41] let n ∈ N, then the Augmented Zagreb index of 

(𝐷𝑛 𝑃𝑛) is given as : 

AZI(𝐷𝑛 𝑃𝑛) = 
38031

100
𝑛 − 88 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define in the theorem 2.1.1. By using 

definition of Augmented Zagreb topological index we will apply on Porphyrin 

dendrimer (𝐷𝑛 𝑃𝑛). By taken its derivative we will get the topological index.  
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AZI (𝐷𝑛 𝑃𝑛)  = ∑ (
d(s) ∗ d(v) 

d(s)+ d(v)−2
)3

 sv∈E(G) . 

𝑑

𝑑(𝑥)
[ AZP(𝑃𝑛, x)]𝑥=1 = (2𝑛) 𝑥  

27

8 + (24𝑛) 𝑥
64

27  + (58𝑛 − 11)𝑥8 +

(13𝑛)𝑥
729

64 + (8𝑛)𝑥
1728

125  

𝑑

𝑑(𝑥)
[ AZP(𝐷𝑛 𝑃𝑛, 𝑥)]𝑥=1 = 

27

 4
𝑛 + 

1536

27
𝑛 +

9477

64
 𝑛 +

13824

125
𝑛 + 58 𝑛 − 88 

AZI(𝐷𝑛 𝑃𝑛) = 
38031

100
𝑛 − 88. 

Theorem 2.1.2: Let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(𝐷𝑛 𝑃𝑛) is define as : 

𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥) = (60𝑛 − 11)𝑥4 + (26𝑛)𝑥9 + (13𝑛)𝑥16 + (8𝑛)𝑥25 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are defined as follow. See table 2.1: 

| 𝐸1(𝐷𝑛 𝑃𝑛)| consist 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, where  

sv ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸2(𝐷𝑛 𝑃𝑛) | consist 24𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 4,  where 

sv ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸3(𝐷𝑛 𝑃𝑛)| consist 10𝑛 − 5 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, where 

sv ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸4(𝐷𝑛 𝑃𝑛)| consist 48𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸5(𝐷𝑛 𝑃𝑛) | consist 13𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 3 , where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 
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| 𝐸6(𝐷𝑛 𝑃𝑛)| consist 8𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, where 

 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸1(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸2(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸4(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸5(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸6(𝐺)  

= (2𝑛) 𝑥(1+3−2)2
+ (24𝑛) 𝑥(1+4−2)2

+ (10𝑛 − 5)𝑥(2+2−2)2
+ (48𝑛 −

6) 𝑥(1+3−2)2
+ (2𝑛) 𝑥(2+3−2)2

+ (13𝑛) 𝑥(3+3−2)2
+ (8𝑛) 𝑥(3+4−2)2

 

𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥)   = (60𝑛 − 11)𝑥4 + (26𝑛)𝑥9 + (13𝑛)𝑥16 + (8𝑛)𝑥25. 

Corollary 2.1.2:Let n ∈ N, then the 1st Reformulated Zagreb index of 

(𝐷𝑛 𝑃𝑛) is given as : 

𝑅𝑀1(𝐷𝑛 𝑃𝑛) = 1104𝑛 − 74. 

Proof: By the same way of corollary 2.1.1, to compute the result of 1st 

Reformulated Zagreb Polynomial, which is denoted by 𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥), of the 

dendrimer  (𝐷𝑛 𝑃𝑛), we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, 

This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥)]⎹ 𝑥=1= (60𝑛 − 11)𝑥4 + (26𝑛)𝑥9 + (13𝑛)𝑥16 +

(8𝑛)𝑥25. 

𝑑

𝑑(𝑥)
[ 𝑅𝑀1(𝐷𝑛 𝑃𝑛, 𝑥)|𝑥=1= 8𝑛 + 216𝑛 + 40𝑛 − 20 + 432𝑛 − 54 + 208𝑛 +

200𝑛. 
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Thus, the 1st Reformulated Zagreb Index of the porphyrin dendrimer is 

(𝐷𝑛 𝑃𝑛) verified as: 

𝑅𝑀1(𝐷𝑛 𝑃𝑛) = 1104𝑛 − 74. 

Theorem 2.1.3:Let n ∈ N, then the 2nd  Reformulated Zagreb Polynomial of 

(𝐷𝑛 𝑃𝑛) is define as : 

𝑅𝑀2(𝐷𝑛 𝑃𝑛) = (2𝑛)𝑥6 + (10𝑛 − 5)𝑥8 + (24𝑛)𝑥12 + (48𝑛 − 6)𝑥18 +

(13𝑛)𝑥36 + (8𝑛)𝑥80 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define as follow. See table (2.1).  

| 𝐸1(𝐷𝑛 𝑃𝑛) | include 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 3,  where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸2(𝐷𝑛 𝑃𝑛) | include 24 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸3(𝐷𝑛 𝑃𝑛)| include 10𝑛 − 5 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸4(𝐷𝑛 𝑃𝑛) | include 48 𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3 , 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛) 

| 𝐸5(𝐷𝑛 𝑃𝑛) | include 13 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸6(𝐷𝑛 𝑃𝑛) | include 8 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 4 , where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

𝑅𝑀2(𝐷𝑛 𝑃𝑛 , 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸(𝐺)  
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= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸4(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸5(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸6(𝐺)  

= (2𝑛) 𝑥(1+3−2)(1∗3) + (24𝑛) 𝑥(1+4−2)(1∗4) + (10𝑛 − 5)𝑥(2+2−2)(2∗2) +

(48𝑛 − 6)𝑥(2+3−2)(2∗3) + (13𝑛) 𝑥(3+3−2)(3∗3) + (8𝑛) 𝑥(3+4−2)(3∗4) 

 𝑅𝑀2(𝐷𝑛 𝑃𝑛, 𝑥)    = (2𝑛)𝑥6 + (10𝑛 − 5)𝑥8 + (24𝑛)𝑥12 + (48𝑛 − 6)𝑥18 +

(13𝑛)𝑥36 + (8𝑛)𝑥80. 

Corollary 2.1.3:Let n ∈ N, then the 2nd  Reformulated Zagreb index of 

(𝐷𝑛 𝑃𝑛) is given as : 

𝑅𝑀2(𝐷𝑛 𝑃𝑛) = 2288𝑛 − 148. 

Proof: By way of corollary 2.1.1, confirm the result of 2nd  Reformulated 

Zagreb Polynomial, which is denoted by 𝑅𝑀2(𝐷𝑛 𝑃𝑛, 𝑥) , of the dendrimer  

(𝐷𝑛 𝑃𝑛), we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀2(𝐷𝑛 𝑃𝑛, 𝑥)]⎹ 𝑥=1 =  (2𝑛)𝑥6 + (10𝑛 − 5)𝑥8 + (24𝑛)𝑥12 + (48𝑛 −

6)𝑥18 + (13𝑛)𝑥36 + (8𝑛)𝑥80. 

𝑑

𝑑(𝑥)
[ 𝑅𝑀2(𝐷𝑛 𝑃𝑛, 𝑥)|𝑥=1= 12𝑛 + 288 𝑛 + 80𝑛 − 40 + 864𝑛 − 108 

+468 𝑛 + 576𝑛. 

Thus, the 2nd  Reformulated Zagreb Index of the porphyrin dendrimer is 

(𝐷𝑛 𝑃𝑛) verified as: 

𝑅𝑀2(𝐷𝑛 𝑃𝑛) = 2352𝑛 − 148. 
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Theorem2.1.4: Let n ∈ N, then the Edge Irregularity Polynomial of (𝐷𝑛 𝑃𝑛) is 

define as : 

𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥) = (24𝑛)𝑥3 + (2𝑛)𝑥2 + (56𝑛 − 6)𝑥 + 23𝑛 − 5. 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define as it’s shown in the table (2.1).  

| 𝐸1(𝐷𝑛 𝑃𝑛) | consists 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 3,  where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸2(𝐷𝑛 𝑃𝑛) | consists 24 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸3(𝐷𝑛 𝑃𝑛) | consists 10𝑛 − 5 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸4(𝐷𝑛 𝑃𝑛) | consists 48 𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3  , 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸5(𝐷𝑛 𝑃𝑛) | consists 13 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸6(𝐷𝑛 𝑃𝑛) | consists 8 𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 4 , where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥) = ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|

 𝑠𝑣∈𝐸2(𝐺) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸3(𝐺) +

∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸4(𝐺) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|

 𝑠𝑣∈𝐸5(𝐺) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸6(𝐺)  
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= (2𝑛)𝑥|1− 3| + (24𝑛) 𝑥|1− 4| + (10𝑛 − 5)𝑥|2− 2| + (48𝑛 − 6) 𝑥|2− 3| +

(13𝑛) 𝑥|3− 3| + (8𝑛)𝑥|3− 4|. 

  𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥) = (24𝑛)𝑥3 + (2𝑛)𝑥2 + (56𝑛 − 6)𝑥 + 23𝑛 − 5. 

Corollary 2.1.4:Let n ∈ N, then the Edge Irregularity index of (𝐷𝑛 𝑃𝑛) is 

given as : 

𝐼𝑅 (𝐷𝑛 𝑃𝑛) = 132𝑛 − 6. 

Proof: To demonstrate and evaluate the result of Edge Irregularity 

Polynomial, which is denoted by 𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥) , of the dendrimer (𝐷𝑛 𝑃𝑛), we 

differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥)]⎹ 𝑥=1= (24𝑛)𝑥3 + (2𝑛)𝑥2 + (56 𝑛 − 6)𝑥 + 23𝑛 − 5 

𝑑

𝑑(𝑥)
[ 𝐼𝑅 (𝐷𝑛 𝑃𝑛, 𝑥)|𝑥=1= 4𝑛 + 72𝑛 + 48𝑛 − 6 + 8𝑛. 

Thus, the Edge Irregularity Index of the porphyrin dendrimer is 

(𝐷𝑛 𝑃𝑛) verified as: 

𝐼𝑅 (𝐷𝑛 𝑃𝑛) = 132𝑛 − 6. 

Theorem2.1.5: Let n ∈ N, then the Degree Edge Stability Polynomial of 

(𝐷𝑛 𝑃𝑛) is given as : 

𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥) = (24𝑛)𝑥9 + (56𝑛 − 6)𝑥4 + (8𝑛)𝑥 + 23𝑛 − 5 

Proof: The edge set of Porphyrin dendrimer (𝐷𝑛 𝑃𝑛) is divided in to six sets 

𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define in the table (2.1).  

| 𝐸1(𝐷𝑛 𝑃𝑛)| contain 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, where  

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 
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| 𝐸2(𝐷𝑛 𝑃𝑛) | contain 24𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 4 , where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸3(𝐷𝑛 𝑃𝑛)| contain 10𝑛 − 5 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸4(𝐷𝑛 𝑃𝑛) | contain 48𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3  , 

where 𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸5(𝐷𝑛 𝑃𝑛) | contain 13𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 3 , where 

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

| 𝐸6(𝐷𝑛 𝑃𝑛)| contain 8𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, where  

𝑠𝑣 ∈ 𝐸 (𝐷𝑛 𝑃𝑛). 

𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥) = ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(𝐺) +

∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸4(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸5(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸6(𝐺)  

= (2𝑛) 𝑥(1−3)2
+ (24𝑛) 𝑥(1−4)2

+ (10𝑛 − 5)𝑥(2−2)2
+ (48𝑛 − 6)𝑥(1−3)2

+

(13𝑛) 𝑥(3−3)2
+ (8𝑛) 𝑥(3−4)2

 

𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥) = (24𝑛)𝑥9 + (56𝑛 − 6)𝑥4 + (8𝑛)𝑥 + 23𝑛 − 5. 

 

 

 

 



Chapter Two: Computation of Topological Indices and Polynomials of Porphyrin 

(𝑫𝒏 𝑷𝒏) and Propyl Ether Imine (𝑷𝑬𝑻𝑰𝑴) Dendrimers. 

 

28 
 

Corollary 2.1.5:Let n ∈ N, then the Degree Edge Stability index of (𝐷𝑛 𝑃𝑛) is 

given as : 

𝐷𝑆 (𝐷𝑛 𝑃𝑛) = 496𝑛 − 6. 

Proof: To evaluate the result of Degree Edge Stability Polynomial by the 

same way of corollary 2.1.1, and denoted by 𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥) , of the dendrimer  

(𝐷𝑛 𝑃𝑛), we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥)]⎹ 𝑥=1= (24𝑛)𝑥9 + (56𝑛 − 6)𝑥4 + (8𝑛)𝑥 + 23𝑛 − 5 

𝑑

𝑑(𝑥)
[ 𝐷𝑆 (𝐷𝑛 𝑃𝑛, 𝑥)|𝑥=1= 8𝑛 + 432𝑛 + 40𝑛 + 48𝑛 − 6 + 8𝑛. 

Thus, the Degree Edge Stability Index of the porphyrin dendrimer is 

(𝐷𝑛 𝑃𝑛) verified as: 

𝐷𝑆 (𝐷𝑛 𝑃𝑛) = 496𝑛 − 6. 
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2.2 Computation of Topological Indices and Polynomials of 

Propyl Ether Imine Dendrimer (𝐏𝐄𝐓𝐈𝐌). 
Proposition 2.2.2: [41] It considered the second type of dendrimer (PETIM) 

then:  

1. Order of (PETIM) is 24 ∗ 2𝑛 − 23   

2.  Size of  (PETIM) is 24 ∗ 2𝑛 − 24. See figure 2.2 

 

 

 

 

 

 

 

Figure 2.2: dendrimers (PETIM)is also known as Propyl Ether Imine. 

  (PETIM) contain three types of edges based on degree of end vertices of 

each as given in table 2.2. 

Table 2.2: Graph of the structure (PETIM). 

(𝑑𝑠, 𝑑𝑣) (1,2) (2,2) (2,3) 

No. of edges  2𝑛+1 2n+4 − 18  48𝑛 − 6 
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Theorem 2.2.1: Let n ∈ N, then the Augmented Zagreb Polynomial of 

(𝑃𝐸𝑇𝐼𝑀) is given as: 

AZP (𝑃𝐸𝑇𝐼𝑀, 𝑥) = 24 ∗ 𝑥8(2𝑛 − 1) 

Proof: The edge set of Propyl Ether Imine dendrimer (𝑃𝐸𝑇𝐼𝑀) is divided in 

to three sets 𝐸1, 𝐸2 and  𝐸3. Which are define as follow. See table 2.2. 

| 𝐸1(𝑃𝐸𝑇𝐼𝑀)| includes 2𝑛+1 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2 where 

𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀) 

| 𝐸2(𝑃𝐸𝑇𝐼𝑀)| includes 2𝑛+4 − 18 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀) 

| 𝐸3(𝑃𝐸𝑇𝐼𝑀)| includes 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

AZP (𝑃𝐸𝑇𝐼𝑀, 𝑥) =  ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

  𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸3(𝐺) . 

= (2𝑛+1)𝑥(
1∗2

1+2−2
)3

+ (2𝑛+4 − 18 ) 𝑥(
2∗2

2+2−2
)3

 +(6 ∗ 2𝑛 − 6)𝑥(
2∗3

2+3−2
)3

 

 = (2𝑛+1)𝑥8+ (2𝑛+4 − 18 ) 𝑥8 +(6 ∗ 2𝑛 − 6)𝑥8 

AZP (𝑃𝐸𝑇𝐼𝑀, 𝑥) =   24 ∗ 𝑥8(2𝑛 − 1). 
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Corollary 2.2.1:Let n ∈ N, then the Augmented Zagreb index of (𝑃𝐸𝑇𝐼𝑀) is 

given as : 

AZI (𝑃𝐸𝑇𝐼𝑀)= 2𝑛+5 + 6∗ 2𝑛  − 192. 

Proof: By demonstrating the result of Augmented Zagreb Polynomial, which 

is denoted by AZI (𝑃𝐸𝑇𝐼𝑀, 𝑥), of the dendrimer  (𝑃𝐸𝑇𝐼𝑀), we differentiate 

it with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ AZP (𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1= 24 ∗ 𝑥8(2𝑛 − 1) 

Thus, the Augmented Zagreb Index of the Propyl Ether Imine dendrimer is 

(𝑃𝐸𝑇𝐼𝑀) verified as: 

AZI (𝑃𝐸𝑇𝐼𝑀)= 2𝑛+5 + 6∗ 2𝑛  − 192. 

Theorem 2.2.2: Let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀) = (2 ∗ 2𝑛)𝑥 +  (2𝑛+3 − 9)𝑥3 + 3 ∗ 𝑥8(2𝑛 − 1) 

Proof: The edge set of Propyl Ether Imine dendrimer (𝑃𝐸𝑇𝐼𝑀) is divided in 

to three sets 𝐸1, 𝐸2 and  𝐸3. Which are define as follow.  

| 𝐸1(𝑃𝐸𝑇𝐼𝑀)| consists 2𝑛+1 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2 where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

| 𝐸2(𝑃𝐸𝑇𝐼𝑀)| consists 2𝑛+4 − 18 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀) 

| 𝐸3(𝑃𝐸𝑇𝐼𝑀)| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 
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𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸1(𝐺)  + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸2(𝐺)   

+∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸3(𝐺)  

=  (2𝑛+1)𝑥(1+2−2)2
+ (2𝑛+4 − 18 ) 𝑥(2+2−2)2

 +(6 ∗ 2𝑛 − 6)𝑥(2+3−2)2
 

=  𝑥(2 ∗ 2𝑛) + 𝑥3(2𝑛+3 − 9) + 3 ∗ 𝑥8(2𝑛 − 1). 

Corollary 2.2.2:Let n ∈ N, then the 1st  Reformulated Zagreb index of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

 𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀) = 120∗ 2𝑛  − 126. 

Proof: Proving and calculating the result of 1st  Reformulated Zagreb 

Polynomial, which is denoted by 𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀, 𝑥) , of the dendrimer  

(𝑃𝐸𝑇𝐼𝑀), we differentiate it with respect to 𝑥 , evaluating at 𝑥 = 1, This 

yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1= (2 ∗  2𝑛)𝑥 + (2𝑛+3 − 9)𝑥3 

+(3 ∗ 2𝑛 − 3)𝑥8. 

Thus, the 1st  Reformulated Zagreb Index of the Propyl Ether Imine dendrimer 

is (𝑃𝐸𝑇𝐼𝑀) verified as: 

 𝑅𝑀1(𝑃𝐸𝑇𝐼𝑀) = 120∗ 2𝑛  − 126. 

Theorem 2.2.3: Let n ∈ N, then the 2nd   Reformulated Zagreb polynomial of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀, 𝑥) = 2𝑥2 ∗  2𝑛 + 𝑥8(2𝑛+3 − 9) + 3 ∗ 𝑥18(2𝑛 − 1) 
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Proof: The edge set of Propyl Ether Imine dendrimer (𝑃𝐸𝑇𝐼𝑀) is divided in 

to three sets 𝐸1, 𝐸2 and  𝐸3. Which are define as follow.  

| 𝐸1(𝑃𝐸𝑇𝐼𝑀)| is composed of 2𝑛+1 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2 

,where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀) 

| 𝐸2(𝑃𝐸𝑇𝐼𝑀) | is composed of 2𝑛+4 − 18 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 2 , where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

| 𝐸3(𝑃𝐸𝑇𝐼𝑀) | is composed of 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 3 , where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(𝐺)  +∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(𝐺)  

+ ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(𝐺) . 

= (2𝑛+1)𝑥(1+2−2)(1∗2)+ (2𝑛+4 − 18)  𝑥(2+2−2)(2∗2) + (6 ∗

2𝑛6) 𝑥(2+3−2)(2∗3) 

𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀, 𝑥) = (2 ∗  2𝑛)𝑥 + 𝑥8(2𝑛+3 − 9) + 𝑥18(3 ∗ 2𝑛 − 3). 

Corollary 2.2.3:Let n ∈ N, then the 2nd   Reformulated Zagreb index of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀) = 240∗ 2𝑛  − 252. 

Proof: To examine critically the result of 2nd Reformulated Zagreb 

polynomial, which is denoted by 𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀, 𝑥), of the dendrimer   

 (𝑃𝐸𝑇𝐼𝑀), we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This 

yields: 
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𝑑

𝑑(𝑥)
[ 𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1=(2 ∗  2𝑛)𝑥 + 𝑥8(2𝑛+3 − 9) 

+𝑥18(3 ∗ 2𝑛 − 3). 

Thus, the 2nd   Reformulated Zagreb Index of the Propyl Ether Imine 

dendrimer is (𝑃𝐸𝑇𝐼𝑀) verified as: 

𝑅𝑀2(𝑃𝐸𝑇𝐼𝑀) = 240∗ 2𝑛  − 252. 

Theorem2.2.4: Let n ∈ N, then the Edge Irregularity polynomial of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝐼𝑅 (𝑃𝐸𝑇𝐼𝑀, 𝑥) = 8 ∗ 2𝑛 ∗ 𝑥 + 16 ∗ 2𝑛 − 6 ∗ 𝑥 − 18. 

Proof: The edge set of Propyl Ether Imine dendrimer (𝑃𝐸𝑇𝐼𝑀) is divided in 

to three sets 𝐸1, 𝐸2 and  𝐸3. Which are define as follow.  

| 𝐸1(𝑃𝐸𝑇𝐼𝑀)| involve 2𝑛+1 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

| 𝐸2(𝑃𝐸𝑇𝐼𝑀)| involve 2𝑛+4 − 18 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

| 𝐸3(𝑃𝐸𝑇𝐼𝑀)| involve 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

𝐼𝑅 (𝑃𝐸𝑇𝐼𝑀, 𝑥) = ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸1(𝐺) +∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|

 𝑠𝑣∈𝐸2(𝐺) + ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸3(𝐺) . 

= (2𝑛+1)𝑥|1−2|+ (2𝑛+4 − 18)  𝑥|2−2| +(6 ∗ 2𝑛 − 6) 𝑥|2−3| 

𝐼𝑅 (𝑃𝐸𝑇𝐼𝑀, 𝑥) = (8 ∗ 2𝑛 − 6)𝑥 + (2𝑛+4 − 18). 
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Corollary 2.2.4:Let n ∈ N, then the Edge Irregularity index of (𝑃𝐸𝑇𝐼𝑀) is 

given as : 

𝐼𝑅 (𝑃𝐸𝑇𝐼𝑀) = 8 ∗ 2𝑛  − 6. 

Proof: To prove critically the result of Edge Irregularity polynomial, which 

is denoted by 𝐼𝑅(𝑃𝐸𝑇𝐼𝑀, 𝑥), of the dendrimer  (𝑃𝐸𝑇𝐼𝑀), we differentiate it 

with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐼𝑅(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1=(8 ∗ 2𝑛 − 6)𝑥 + (2𝑛+4 − 18). 

𝑑

𝑑(𝑥)
[ 𝐼𝑅(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1= 8 ∗ 2𝑛  − 6 

Thus, the Edge Irregularity Index of the Propyl Ether Imine dendrimer is 

(𝑃𝐸𝑇𝐼𝑀) verified as: 

𝐼𝑅 (𝑃𝐸𝑇𝐼𝑀) = 8 ∗ 2𝑛  − 6. 

Theorem 2.2.5: Let n ∈ N, then the Degree Edge Stability Polynomial of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝐷𝑆 (𝑃𝐸𝑇𝐼𝑀, 𝑥) =  (8 ∗ 2𝑛 − 6)𝑥 + (2𝑛+4 − 18) 

Proof: The edge set of Propyl Ether Imine dendrimer (𝑃𝐸𝑇𝐼𝑀) is divided in 

to three sets 𝐸1, 𝐸2 and  𝐸3. Which are define as follow.  

| 𝐸1(𝑃𝐸𝑇𝐼𝑀)| it has 2𝑛+1 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

| 𝐸2(𝑃𝐸𝑇𝐼𝑀) | it has 2𝑛+4 − 18 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2 , 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 
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| 𝐸3(𝑃𝐸𝑇𝐼𝑀) | it has 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3 , 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐸𝑇𝐼𝑀). 

𝐷𝑆 (𝑃𝐸𝑇𝐼𝑀, 𝑥) = ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(𝐺) +∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(𝐺)  

= (2𝑛+1)𝑥(1−2)2
+ (2𝑛+4 − 18)  𝑥(2−2)2

 +(6 ∗ 2𝑛 − 6) 𝑥(2−3)2
. 

𝐷𝑆 (𝑃𝐸𝑇𝐼𝑀, 𝑥) =  (8 ∗ 2𝑛 − 6)𝑥 + (2𝑛+4 − 18). 

Corollary 2.2.5:Let n ∈ N, then the Degree Edge Stability index of 

(𝑃𝐸𝑇𝐼𝑀) is given as : 

𝐷𝑆 (𝑃𝐸𝑇𝐼𝑀) = 8 ∗ 2𝑛  − 6. 

Proof: To demonstrate and evaluate the result of Degree Edge Stability 

Polynomial, which is denoted by 𝐷𝑆(𝑃𝐸𝑇𝐼𝑀, 𝑥), of the dendrimer  (𝑃𝐸𝑇𝐼𝑀), 

we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐷𝑆(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1=(8 ∗ 2𝑛 − 6)𝑥 + (2𝑛+4 − 18). 

𝑑

𝑑(𝑥)
[ 𝐷𝑆(𝑃𝐸𝑇𝐼𝑀, 𝑥)]⎹ 𝑥=1= 8 ∗ 2𝑛  − 6 

Thus, the Degree Edge Stability Index of the Propyl Ether Imine dendrimer is 

(𝑃𝐸𝑇𝐼𝑀) verified as: 

𝐷𝑆 (𝑃𝐸𝑇𝐼𝑀) = 8 ∗ 2𝑛  − 6 
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Chapter Three 

Computation of Topological Indices and Polynomials 

of Zinc Porphyrin (Dp𝒁𝒏) and Poly (Ethylene Amide 

Amine) (PETAA) Dendrimers. 
 

3.1 Computation of Topological Indices and Polynomials of 

Zinc Porphyrin Dendrimer (DP𝒁𝒏). 

Introduction: The topological indices are used to obtain the topological 

properties and steric structure of dendrimers or macromolecules. As has been 

said earlier throughout this chapter will deal with computing some 

polynomials for various different classes of dendrimers like p Zinc Porphyrin 

(DP𝑍𝑛). and  Poly(Ethylene Amide Amine) dendrimers (PETAA). 

Proposition 3.1.1: [41] It considered the first type of dendrimer (DP𝑍𝑛) then: 

 1. Order of (DP𝑍𝑛) is 96 ∗ 𝑛 − 10   

2.  Size of  (DP𝑍𝑛) is 105 ∗ 𝑛 − 11. See figure. 

 

 

 

 

 

 

Figure 3.1: dendrimers (DP𝑍𝑛)is also known as Zinc Porphyrin. 
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  (DP𝑍𝑛)  strictures contain three types of edges based on degree of end 

vertices of each as given in table 3.1. 

Table 3.1: Graph of the stretcher (DP𝑍𝑛). 

(𝑑𝑠, 𝑑𝑣) (2,2) (2,3) (3,3) (3,4) 

No. of edges  16 ∗ 2𝑛 − 4   40 ∗ 2𝑛 − 16  8 ∗ 2𝑛 − 16  4 

Theorem 3.1.1: Let n ∈ N, then the Augmented Zagreb Polynomial of 

(DP𝑍𝑛)is given as : 

AZP(DP𝑍𝑛, 𝑥)= 8 ∗ 2𝑛 ∗ 𝑥
729

64 + 56 ∗ 2𝑛 ∗ 𝑥8 + 4 ∗ 𝑥
1728

125 − 16 ∗ 𝑥
726

64  

−20 𝑥8 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛))is divided in to four 

sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are done in the entirety of chapter two.  

| 𝐸1(DP𝑍𝑛)| contain 16 ∗ 2𝑛 − 4  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸2(DP𝑍𝑛)| contain 40 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸3(DP𝑍𝑛)| contain 8 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3,  

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸4(DP𝑍𝑛)| contain 4  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, where 

 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

AZP(DP𝑍𝑛, 𝑥) =  ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸(𝐺) . 
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= ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸3(𝐺)  +∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸4(𝐺)  

= (16 ∗ 2𝑛 − 4) 𝑥(
2∗2

2+2−2
)3

+ (40 ∗ 2𝑛 − 16)  𝑥(
2∗3

2+3−2
)3

   

+ (8 ∗ 2𝑛 − 16) 𝑥(
3∗3

3+3−2
)3

+ (4) 𝑥(
3∗4

3+4−2
)3

. 

AZP(DP𝑍𝑛, 𝑥)= 8 ∗ 2𝑛 ∗ 𝑥
729

64 + 56 ∗ 2𝑛 ∗ 𝑥8 + 4 ∗ 𝑥
1728

125  

−16 ∗ 𝑥
726

64 − 20 𝑥8. 

Corollary 3.1.1: Let n ∈ N, then the Augmented Zagreb index of (DP𝑍𝑛) is 

given as : 

AZI (DP𝑍𝑛)= 64∗ 2𝑛  − 231.95. 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛)is divided in to four 

sets 𝐸1 , 𝐸2 ,  𝐸3  and  𝐸4 . Which are define in the theorem 3.1.1. By using 

definition of Augmented Zagreb topological index we will apply on Porphyrin 

dendrimer(DP𝑍𝑛). By taken its derivative we will get the topological index.  

AZI (DP𝑍𝑛)= ∑ (
d(s) ∗ d(v) 

d(s)+ d(v)−2
)3

 sv∈E(G) . 

𝑑

𝑑(𝑥)
[ AZP(DP𝑍𝑛, 𝑥)]𝑥=1 =  8 ∗ 2𝑛 ∗ 𝑥

729

64 + 56 ∗ 2𝑛 ∗ 𝑥8 + 4 ∗ 𝑥
1728

125  

−16 ∗ 𝑥
726

64 − 20 𝑥8. 

𝑑

𝑑(𝑥)
[ AZP(DP𝑍𝑛, 𝑥)]𝑥=1 = 64∗ 2𝑛  − 231.95. 
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AZP(DP𝑍𝑛, 𝑥) = 64∗ 2𝑛  − 231.95. 

Theorem 3.1.2: let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(DP𝑍𝑛) is given as : 

𝑅𝑀1(DP𝑍𝑛) = (16 ∗ 2𝑛 − 4) 𝑥8 + (40 ∗ 2𝑛 − 16)𝑥27 

+(8 ∗ 2𝑛 − 16)𝑥64 + 4 ∗ 𝑥125. 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛))is divided in to four 

sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are done in the entirety of chapter three.  

| 𝐸1(DP𝑍𝑛)| includes16 ∗ 2𝑛 − 4  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸2(DP𝑍𝑛)| includes40 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸3(DP𝑍𝑛)| includes8 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸4(DP𝑍𝑛) | includes 4  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 4 ,  where 

𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

𝑅𝑀1(DP𝑍𝑛) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸1(𝐺)  + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸2(𝐺)  

+∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸4(𝐺)  

= (16 ∗ 2𝑛 − 4)𝑥(2+2−2)3
+ (40 ∗ 2𝑛 − 16)  𝑥(2+3−2)3

  + (8 ∗ 2𝑛 −

16) 𝑥(3+3−2)3
+ (4) 𝑥(3+4−2)3

. 
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𝑅𝑀1(DP𝑍𝑛, 𝑥)= (16 ∗ 2𝑛 − 4) 𝑥8 + (40 ∗ 2𝑛 − 16)𝑥27 + (8 ∗ 2𝑛 −

16)𝑥64 + 4 ∗ 𝑥125. 

Corollary 3.1.2: Let n ∈ N, then the 1st  Reformulated Zagreb index of 

(DP𝑍𝑛) is given as : 

𝑅𝑀1 (DP𝑍𝑛)= 552 ∗ 2𝑛  − 411.75. 

Proof: By the same way of corollary 3.1.1, to confirm and compute the result 

of 1st  Reformulated Zagreb Polynomial, which is denoted by 𝑅𝑀1 (DP𝑍𝑛, 𝑥), 

of the dendrimer  (DP𝑍𝑛), we differentiate it with respect to 𝑥, evaluating at 

𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀1(DP𝑍𝑛, 𝑥)]⎹ 𝑥=1 =  (16 ∗ 2𝑛 − 4) 𝑥8 + (40 ∗ 2𝑛 − 16)𝑥27 + (8 ∗

2𝑛 − 16)𝑥64 + 4 ∗ 𝑥125. 

Thus, the 1st  Reformulated Zagreb Index of the Zinc Porphyrin dendrimer is 

(DP𝑍𝑛) verified as: 

𝑅𝑀1 (DP𝑍𝑛)= 552 ∗ 2𝑛  − 411.75. 

Theorem 3.1.3: let n ∈ N, then the 2nd   Reformulated Zagreb Polynomial of 

(DP𝑍𝑛) is given as : 

𝑅𝑀2(DP𝑍𝑛) = (16 ∗ 2𝑛 − 4)𝑥8 + (40 ∗ 2𝑛 − 16)𝑥18 

+(8 ∗ 2𝑛 − 16)𝑥36 + 4𝑥60. 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛))is divided in to four 

sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are done in the entirety of chapter two.  
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| 𝐸1(DP𝑍𝑛) | it has 16 ∗ 2𝑛 − 4  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2 , 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛).  

| 𝐸2(DP𝑍𝑛) | it has 40 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸3(DP𝑍𝑛) | it has 8 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 3 , 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸4(DP𝑍𝑛)| it has 4  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4 , where  

𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

𝑅𝑀2(DP𝑍𝑛, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(𝐺)  +∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸4(𝐺)  

= (16 ∗ 2𝑛 − 4) 𝑥(2+2−2)(2∗2)+ (40 ∗ 2𝑛 − 16)  𝑥(2+3−2)(2∗3)  + (8 ∗ 2𝑛 −

16) 𝑥(3+3−2)(3∗3) + (4) 𝑥(3+4−2)(3∗4) 

𝑅𝑀2(DP𝑍𝑛, 𝑥) = (16 ∗ 2𝑛 − 4)𝑥8 + (40 ∗ 2𝑛 − 16)𝑥18 + (8 ∗ 2𝑛 −

16)𝑥36 + 4𝑥60). 

Corollary 3.1.3: Let n ∈ N, then the 2nd   Reformulated Zagreb index of 

(DP𝑍𝑛) is given as : 

𝑅𝑀2 (DP𝑍𝑛)= 1136 ∗ 2𝑛  − 656. 

Proof: By using a similar path used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 
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𝑑

𝑑(𝑥)
[ 𝑅𝑀2(DP𝑍𝑛, 𝑥)]⎹ 𝑥=1= (16 ∗ 2𝑛 − 4)𝑥8 + (40 ∗ 2𝑛 − 16)𝑥18 

+(8 ∗ 2𝑛 − 16)𝑥36 + 4𝑥60). 

Thus, the 2nd   Reformulated Zagreb Index of the Zinc Porphyrin dendrimer is 

(DP𝑍𝑛) verified as: 

𝑅𝑀2 (DP𝑍𝑛)= 1136 ∗ 2𝑛  − 656. 

Theorem 3.1.4: Let n ∈ N, then the Edge Irregularity Polynomial of 

(DP𝑍𝑛) is given as : 

𝐼𝑅 (DP𝑍𝑛) = (24 ∗ 2𝑛 − 20) + (40 ∗ 2𝑛 − 12)𝑥. 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛))is divided in to four 

sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are done in the entirety of chapter three.  

| 𝐸1(DP𝑍𝑛)| consists 16 ∗ 2𝑛 − 4  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸2(DP𝑍𝑛)| consists 40 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸3(DP𝑍𝑛)| consists 8 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸4(DP𝑍𝑛) | consists 4  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  , 𝑑(𝑣) = 4,  where 

𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

𝐼𝑅 (DP𝑍𝑛) = ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸(𝐺) . 
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= ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|

 𝑠𝑣∈𝐸2(𝐺) + ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸3(𝐺) + 

∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸4(𝐺)  

= (16 ∗ 2𝑛 − 4)𝑥| 2−2|+ (40 ∗ 2𝑛 − 16 )𝑥| 2−3| + (8 ∗ 2𝑛 − 16) 𝑥| 3−3| 

+(4)𝑥| 3−4| 

𝐼𝑅 (DP𝑍𝑛, 𝑥) = (24 ∗ 2𝑛 − 20) + (40 ∗ 2𝑛 − 12)𝑥. 

Corollary 3.1.4: Let n ∈ N, then the Edge Irregularity index of (DP𝑍𝑛) is 

given as : 

𝐼𝑅 (DP𝑍𝑛)= 40 ∗ 2𝑛  − 12. 

Proof: By using a similar path used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 

𝑑

𝑑(𝑥)
[ 𝐼𝑅(DP𝑍𝑛, 𝑥)]⎹ 𝑥=1= (24 ∗ 2𝑛 − 20) + (40 ∗ 2𝑛 − 12)𝑥. 

Thus, the Edge Irregularity Index of the Zinc Porphyrin dendrimer is 

(DP𝑍𝑛) verified as: 

𝐼𝑅 (DP𝑍𝑛)= 40 ∗ 2𝑛  − 12. 

Theorem 3.1.5: Let n ∈ N, then the Degree – Edge Stability Polynomial of 

(DP𝑍𝑛) is given as : 

𝐷𝑆 (DP𝑍𝑛) = (24 ∗ 2𝑛  − 20) + (40 ∗ 2𝑛 − 12)𝑥 

Proof: The edge set of Zinc Porphyrin dendrimer (DP𝑍𝑛))is divided in to four 

sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are done in the entirety of chapter two.  
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| 𝐸1(DP𝑍𝑛) | is made up of 16 ∗ 2𝑛 − 4  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 2, where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛)  

| 𝐸2(DP𝑍𝑛) | is made up of 40 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 3, where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸3(DP𝑍𝑛) | is made up of 8 ∗ 2𝑛 − 16 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3  ,  

𝑑(𝑣) = 3, where 𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

| 𝐸4(DP𝑍𝑛)| is made up of 4  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4,  where 

𝑠𝑣 ∈ 𝐸 (DP𝑍𝑛). 

𝐷𝑆 (DP𝑍𝑛)| = ∑ 𝑥(𝑑(𝑢)−𝑑(𝑣))2

 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(𝐺) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(𝐺)  

+∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸4(𝐺) . 

= (16 ∗ 2𝑛 − 4)  𝑥(2−2)2
 + (40 ∗ 2𝑛 − 16)  𝑥(2−3)2

  + (8 ∗ 2𝑛 −

16) 𝑥(3−3)2
+ (4) 𝑥(3−4)2

 

𝐷𝑆 (DP𝑍𝑛, 𝑥) = (24 ∗ 2𝑛  − 20) + (40 ∗ 2𝑛 − 12)𝑥. 

Corollary 3.1.5: Let n ∈ N, then the Degree Edge Stability index of (DP𝑍𝑛) is 

given as : 

𝐷𝑆(DP𝑍𝑛) = 40 ∗ 2𝑛  − 12. 

Proof: By using a similar approach used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 
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𝑑

𝑑(𝑥)
[ 𝐷𝑆(DP𝑍𝑛, 𝑥)]⎹ 𝑥=1= (24 ∗ 2𝑛  − 20) + (40 ∗ 2𝑛 − 12)𝑥. 

Thus, the Degree Edge Stability Index of the Zinc Porphyrin dendrimer is 

(DP𝑍𝑛) verified as: 

𝐷𝑆(DP𝑍𝑛) = 40 ∗ 2𝑛  − 12. 
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3.2: Computation of Topological Indices and Polynomials of 

Poly (Ethylene Amide Amine) (PETAA) Dendrimer. 
Proposition 3.2.1: [41] It considered the second type of dendrimer (PETAA) 

then: 

 1. Order of (PETAA) is 44 ∗ 2𝑛 − 18    

2. Size of  (PETAA) is 44 ∗ 2𝑛 − 19. See figure 3.2 

 

 

 

 

 

 

 

 

Figure 3.2: dendrimers (PETAA) is also known as Poly(Ethylene Amide 

Amine). 

 (PETAA) stricture have four types of edges based on degree of end vertices 

of each as given in table 3.2. 
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Table 3.2: Graph of the stricture (PETAA). 

(𝑑𝑠, 𝑑𝑣) (1,2) (1,3) (2,2) (2,3) 

No. of edges  4 ∗ 2𝑛 4 ∗ 2𝑛 − 2   16 ∗ 2𝑛 − 8  20 ∗ 2𝑛 − 9 

 

Theorem 3.2.1: Let n ∈ N, then the Augmented Zagreb Polynomial of 

(PETAA)is given as : 

AZP (PETAA, 𝑥)= (40 ∗ 2𝑛 − 17)𝑥8 + (4 ∗ 2𝑛 − 2)𝑥
27

8  

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is 

divided in to four sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are define as follow 

| 𝐸1(PETAA) | consists 4 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸2(PETAA)| consists 4 ∗ 2𝑛 − 2 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸3(PETAA)|consists 16 ∗ 2𝑛 − 8 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸4(PETAA)| consists20 ∗ 2𝑛 − 9 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3,  

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

AZP (PETAA, 𝑥)=  ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸(𝐺) . 
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= ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸1(𝐺) + ∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸3(𝐺)  +∑ 𝑥
(

𝑑(𝑠) ∗ 𝑑(𝑣) 

𝑑(𝑠)+ 𝑑(𝑣)−2
)3

 𝑠𝑣∈𝐸4(𝐺)  

= (4 ∗ 2𝑛)𝑥(
1∗2

1+2−2
)3

+ (4 ∗ 2𝑛 − 2)  𝑥(
1∗3

1+3−2
)3

  + (16 ∗ 2𝑛 − 8) 𝑥(
2∗2

2+2−2
)3

+

(20 ∗ 2𝑛 − 9) 𝑥(
2∗3

2+3−2
)3

 

AZP (PETAA, 𝑥)= (40 ∗ 2𝑛 − 17)𝑥8 + (4 ∗ 2𝑛 − 2)𝑥
27

8 . 

Corollary 3.2.1: Let n ∈ N, then the Augmented Zagreb index of (PETAA) is 

given as : 

AZI (PETAA)= 333.5∗ 2𝑛 − 142.7 

Proof: By using a similar approach used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ AZP (PETAA, 𝑥)]⎹ 𝑥=1= (40 ∗ 2𝑛 − 17)𝑥8 + (4 ∗ 2𝑛 − 2)𝑥

27

8 . 

Thus, the Augmented Zagreb Index of the Poly(Ethylene Amide Amine) 

dendrimer is (PETAA) verified as: 

AZI (PETAA) = 333.5∗ 2𝑛 − 142.7 
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Theorem 3.2.2: let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(PETAA) is given as : 

𝑅𝑀1(𝑃𝐸𝑇𝐴𝐴) = (4 ∗ 2𝑛)𝑥 + (20 ∗ 2𝑛 − 10)𝑥8 + (20 ∗ 2𝑛 − 9)𝑥27 

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is 

divided in to four sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are define as follow. 

| 𝐸1(PETAA)| is made up of 4 ∗ 2𝑛  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸2(PETAA) | is made up of 4 ∗ 2𝑛 − 2 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 

𝑑(𝑣) = 3, where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸3(PETAA)|is made up of 16 ∗ 2𝑛 − 8 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 2, where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸4(PETAA) | is made up of 20 ∗ 2𝑛 − 9 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 

𝑑(𝑣) = 3,  where 𝑠𝑣 ∈ 𝐸 (PETAA). 

𝑅𝑀1(PETAA, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸(𝐺)  

=∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸1(𝐺)  + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸2(𝐺)   

+∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈𝐸4(𝐺)  

=(4 ∗ 2𝑛)𝑥(1+2−2)3
+ (4 ∗ 2𝑛 − 2)  𝑥(1+3−2)3

  + (16 ∗ 2𝑛 − 8) 𝑥(2+2−2)3
+

(20 ∗ 2𝑛 − 9) 𝑥(2+3−2)3
. 

𝑅𝑀1(PETAA, 𝑥) = (4 ∗ 2𝑛)𝑥 + (20 ∗ 2𝑛 − 10)𝑥8 + (20 ∗ 2𝑛 − 9)𝑥27 
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Corollary 3.2.2: Let n ∈ N, then the 1st  Reformulated Zagreb index of 

(PETAA) is given as : 

𝑅𝑀1(PETAA) = 520 ∗ 2𝑛  − 238. 

Proof: By using a similar approach  we  conclude the result by evaluating the 

polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀1(PETAA, x)]⎹ 𝑥=1=(4 ∗ 2𝑛)𝑥 + (20 ∗ 2𝑛 − 10)𝑥8 

+(20 ∗ 2𝑛 − 9)𝑥27 

Thus, the 1st  Reformulated Zagreb Index of the Poly(Ethylene Amide Amine) 

dendrimer is (PETAA) verified as: 

𝑅𝑀1(PETAA) = 520 ∗ 2𝑛  − 238. 

Theorem 3.2.3: Let n ∈ N, then the 2nd   Reformulated Zagreb Polynomial of 

(PETAA)is given as : 

𝑅𝑀2(PETAA)= (4 ∗ 2𝑛)𝑥2 + (20 ∗ 2𝑛 − 10)𝑥8 + (20 ∗ 2𝑛 − 9)𝑥27 

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is 

divided in to four sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are as follow.  

| 𝐸1(PETAA) | include  4 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸2(PETAA)| include  4 ∗ 2𝑛 − 2 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 



Chapter Three: Computation of Topological Indices and Polynomials 

of Zinc Porphyrin ( DP 𝒁𝒏)  and Poly (Ethylene Amide Amine) 

(PETAA) Dendrimers.  
 

52 
 

| 𝐸3(PETAA)|include  16 ∗ 2𝑛 − 8 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸4(PETAA)| include  20 ∗ 2𝑛 − 9 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3,  

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

𝑅𝑀2(PETAA, 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸(𝐺)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(𝐺)  +∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(𝐺) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(𝐺) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸4(𝐺)  

= (4 ∗ 2𝑛)𝑥(1+2−2)(1∗2) + (4 ∗ 2𝑛 − 2)  𝑥(1+3−2)(1∗3)  + (16 ∗ 2𝑛 −

8) 𝑥(2+2−2)(2∗2) + (20 ∗ 2𝑛 − 9) 𝑥(2+3−2)(2∗3) 

𝑅𝑀2(PETAA, 𝑥)= (4 ∗ 2𝑛)𝑥 + (20 ∗ 2𝑛 − 10)𝑥8 + (20 ∗ 2𝑛 − 9)𝑥27. 

Corollary 3.2.3: Let n ∈ N, then the 2nd Reformulated Zagreb index of 

(PETAA) is given as : 

𝑅𝑀2(PETAA) = 704 ∗ 2𝑛  − 323. 

Proof: By using a similar approach used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀2(PETAA, x)]⎹ 𝑥=1= (4 ∗ 2𝑛)𝑥 + (20 ∗ 2𝑛 − 10)𝑥8 

+(20 ∗ 2𝑛 − 9)𝑥27. 

Thus, the 2nd   Reformulated Zagreb Index of the Poly(Ethylene Amide 

Amine) dendrimer is (PETAA) verified as: 

𝑅𝑀2(PETAA) = 704 ∗ 2𝑛  − 323. 
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Theorem 3.2.4: let n ∈ N, then the Edge Irregularity Polynomial of 

(PETAA) is given as : 

𝐼𝑅 (PETAA, 𝑥)= (16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥 + (4 ∗ 2𝑛 − 2)𝑥2. 

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is 

divided in to four sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are define as follow. 

| 𝐸1(PETAA)| have 4 ∗ 2𝑛  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸2(PETAA) | have 4 ∗ 2𝑛 − 2 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸3(PETAA)| have 16 ∗ 2𝑛 − 8 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸4(PETAA) | have 20 ∗ 2𝑛 − 9 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3,  

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

𝐼𝑅 (PETAA, x) = ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈E(G)  

= ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸1(G) + ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸3(G) + 

∑ 𝑥| 𝑑(𝑠)−𝑑(𝑣)|
 𝑠𝑣∈𝐸4(G) . 

= (4 ∗ 2𝑛)𝑥| 1−2| + (4 ∗ 2𝑛 − 2)  𝑥| 1−3|  + (16 ∗ 2𝑛 − 8) 𝑥| 2−2| + (20 ∗

2𝑛 − 9) 𝑥| 2−3| 

𝐼𝑅 (PETAA, X) = (16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥 + (4 ∗ 2𝑛 − 2)𝑥2. 
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Corollary 3.2.4: Let n ∈ N, then the Edge Irregularity index of (PETAA) is 

given as : 

𝐼𝑅 (PETAA) = 32 ∗ 2𝑛  − 13 

Proof: By using a similar approach used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐼𝑅 (PETAA, x)]⎹ 𝑥=1= (16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥 

+(4 ∗ 2𝑛 − 2)𝑥2. 

Thus, the Edge Irregularity Index of the Poly(Ethylene Amide Amine) 

dendrimer is (PETAA) verified as: 

𝐼𝑅 (PETAA) = 32 ∗ 2𝑛  − 13. 

Theorem 3.2.5: let n ∈ N, then the Degree Edge Stability Polynomial of 

(PETAA)is given as: 

 𝐷𝑆 (PETAA, x)= (16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥 + (4 ∗ 2𝑛 − 2)𝑥4 

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is 

divided in to four sets 𝐸1, 𝐸2, 𝐸3and 𝐸4 . Which are define as follow 

| 𝐸1(PETAA)| contain 4 ∗ 2𝑛  edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸2(PETAA)| contain 4 ∗ 2𝑛 − 2 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 
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| 𝐸3(PETAA)|contain 16 ∗ 2𝑛 − 8 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

| 𝐸4(PETAA)| contain 20 ∗ 2𝑛 − 9 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (PETAA). 

𝐷𝑆 (PETAA, x)= ∑ 𝑥(𝑑(𝑢)−𝑑(𝑣))2

 𝑠𝑣∈E(G)  

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(G)  

+∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸4(G) . 

= (4 ∗ 2𝑛)𝑥(1−2)2
+ (4 ∗ 2𝑛 − 2)  𝑥(1−3)2

  + (16 ∗ 2𝑛 − 8) 𝑥(2−2)2
+ (20 ∗

2𝑛 − 9) 𝑥(2−3)2
 

DS (PETAA, x) =(16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥 + (4 ∗ 2𝑛 − 2)𝑥4. 

Corollary 3.2.5: Let n ∈ N, then the Degree Edge Stability index of 

(PETAA) is given as: 

𝐷𝑆 (PETAA) =  40 ∗ 2𝑛 − 17 

Proof: By using a similar approach used in the proof of corollary 3.1.1, we  

conclude the result by evaluating the polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐷𝑆 (PETAA, x) ]⎹ 𝑥=1= (16 ∗ 2𝑛 − 8) + (24 ∗ 2𝑛 − 9)𝑥  

+(4 ∗ 2𝑛 − 2)𝑥4. 

Thus, the Degree Edge Stability Index of the Poly(Ethylene Amide Amine) 

dendrimer is (PETAA) verified as: 

𝐷𝑆 (PETAA) =  40 ∗ 2𝑛 − 17
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Chapter Four 

Computation of Topological Indices and Polynomials 

of Aminoisophthalate Dister Monomer (𝑨𝑷𝑫[𝒏]) and  

Poly (Amid Amine) (𝑷𝑫[𝒏]) Dendrimers 
 

4.1 Computation of Topological Indices and Polynomials of 

Aminoisophthalate Dister Monomer Dendrimer (𝑨𝑷𝑫[𝒏]). 

Introduction: The topological indices are used to obtain the topological 

properties and steric structure of dendrimers or macromolecules. As has been 

said earlier throughout this chapter will deal with computing some polynomials 

for various different classes of dendrimers like aminoisophthalate dister 

monomer (𝐴𝑃𝐷[𝑛]) and  poly (amidoamine) dendrimer (𝑃𝐷[𝑛]).  

Proposition 4.1: [41] It considered the first type of dendrimer (𝐴𝑃𝐷[𝑛]) then: 

1. Order of (𝐴𝑃𝐷[𝑛]) is 30 ∗ 2𝑛+1 − 48  

2. Size of (𝐴𝑃𝐷[𝑛]) is 33 ∗ 2𝑛+1 − 54. See figure 4.1 

 

 

 

 

 

Figure 4.1: dendrimers (𝐴𝑃𝐷[𝑛]) is also known as aminoisophthalate dister 

monomer . 
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 (𝐴𝑃𝐷[𝑛])structures consist six types of edges based on degree of end vertices 

of each as given in table 4.1. 

Table 4.1: Graph of the structures (𝐴𝑃𝐷[𝑛]) 

(𝑑𝑠, 𝑑𝑣) (1,2) (1,3) (1,4) (2,2) (2,3) (3,4) 

No. of 

edges  

3 ∗ 2𝑛 3 ∗ 2𝑛 − 3 6 ∗ 2𝑛 − 6 6 ∗ 2𝑛 − 6 42 ∗ 2𝑛 − 33 6 ∗ 2𝑛 − 6 

 

First of all, we are going to calculate the Augmented Zagreb polynomial for 

the molecular (𝐴𝑃𝐷[𝑛])  

Theorem 4.1.1: Let n ∈ N, then the Augmented Zagreb polynomial of 

(𝐴𝑃𝐷[𝑛]) is given as : 

AZP (𝐴𝑃𝐷[𝑛]), 𝑥)  =   (6 ∗ 2𝑛 − 6) 𝑥  
1728

125 + (6 ∗ 2𝑛 − 6)𝑥
64

27  + (3 ∗ 2𝑛 −

3)𝑥
27

8 + (51 ∗ 2𝑛 − 39)𝑥8. 

Proof: The edge set of aminoisophthalate dister monomer dendrimer  

(𝐴𝑃𝐷[𝑛])  is divided in to six sets 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define 

as follow. See table 4.1. 

| 𝐸1(𝐴𝑃𝐷[𝑛])  | Comprise 3 ∗ 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸2(𝐴𝑃𝐷[𝑛])| Comprise 3 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) =

3, where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]) . 

| 𝐸3(𝐴𝑃𝐷[𝑛])| Comprise 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) =

4, where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 
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| 𝐸4(𝐴𝑃𝐷[𝑛])| Comprise 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) =

2, where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸5(𝐴𝑃𝐷[𝑛])| Comprise 42 ∗ 2𝑛 − 33 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) =

3, where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸6(𝐴𝑃𝐷[𝑛])| Comprise 6 ∗ 2𝑛 − 6edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]).  

AZP (𝐴𝑃𝐷[𝑛], 𝑥)  = ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈E(G)  

= ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸1(G) + ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸2(G) +

∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸3(G) + ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸4(G) +

∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸5(G) + ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸6(G)  

= (3 ∗ 2𝑛) 𝑥(
1∗2

1+2−2
)3

+ (3 ∗ 2𝑛 − 3 ) 𝑥(
1∗3

1+3−2
)3

+ (6 ∗ 2𝑛 − 6) 𝑥(
1∗4

1+4−2
)3

+

(6 ∗ 2𝑛 − 6) 𝑥(
2∗2

2+2−2
)3

+ (42 ∗ 2𝑛 − 33) 𝑥(
2∗3

2+3−2
)3

+ (6 ∗ 2𝑛 − 6) 𝑥(
3∗4

3+4−2
)3

 

AZP(𝐴𝑃𝐷[𝑛], 𝑥) =  (6 ∗ 2𝑛 − 6)𝑥  
1728

125 + (6 ∗ 2𝑛 − 6)𝑥
64

27  

+(3 ∗ 2𝑛 − 3)𝑥
27

8 + (51 ∗ 2𝑛 − 39)𝑥8. 
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Corollary 4.1.1: Let n ∈ N, then the Augmented Zagreb index of (𝐴𝑃𝐷[𝑛]) is 

given as : 

AZI (𝐴𝑃𝐷[𝑛]) = 515.291 ∗ 2𝑛  − 419.291 

Proof: By using a similar path we  conclude the result by evaluating the 

polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ AZP (𝐴𝑃𝐷[𝑛], 𝑥)] 𝑥=1=  (6 ∗ 2𝑛 − 6)𝑥  

1728

125 + (6 ∗ 2𝑛 − 6)𝑥
64

27  

+(3 ∗ 2𝑛 − 3)𝑥
27

8 + (51 ∗ 2𝑛 − 39)𝑥8. 

Thus, the Augmented Zagreb Index of the aminoisophthalate dister monomer 

dendrimer is (𝐴𝑃𝐷[𝑛]) verified as: 

AZI (𝐴𝑃𝐷[𝑛]) = 515.291 ∗ 2𝑛  − 419.291 

Theorem 4.1.2: Let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(𝐴𝑃𝐷[𝑛]) is define as : 

𝑅𝑀1(𝐴𝑃𝐷[𝑛], 𝑥)= (3 ∗ 2𝑛)𝑥 + (9 ∗ 2𝑛 − 9)𝑥4 + (48 ∗ 2𝑛 − 39)𝑥9 

+(6 ∗ 2𝑛 − 6)𝑥25. 

Proof: The edge set of aminoisophthalate dister monomer dendrimer 

(𝐴𝑃𝐷[𝑛])  is divided in to six sets 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define 

as follow. See table 4.1. 

| 𝐸1(𝐴𝑃𝐷[𝑛])  | consists 3 ∗ 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 
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| 𝐸2(𝐴𝑃𝐷[𝑛])| consists 3 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]) . 

| 𝐸3(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸4(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸5(𝐴𝑃𝐷[𝑛])| consists 42 ∗ 2𝑛 − 33 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸6(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]).  

𝑅𝑀1(𝐴𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈E(G)  

=∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸1(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸2(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸3(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸4(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸5(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸6(G)  

= (3 ∗ 2𝑛) 𝑥(1+2−2)2
+ (3 ∗ 2𝑛 − 3) 𝑥(1+3−2)2

+ (6 ∗ 2𝑛 − 6)𝑥(1+4−2)2
+

(6 ∗ 2𝑛 − 6) 𝑥(2+2−2)2
+ (42 ∗ 2𝑛 − 33 ) 𝑥(2+3−2)2

+ (6 ∗ 2𝑛 −

6) 𝑥(3+4−2)2
 

𝑅𝑀1(𝐴𝑃𝐷[𝑛], 𝑥)   = (3 ∗ 2𝑛)𝑥 + (9 ∗ 2𝑛 − 9)𝑥4 + (48 ∗ 2𝑛 − 39)𝑥9 +

(6 ∗ 2𝑛 − 6)𝑥25. 
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Corollary 4.1.2: Let n ∈ N, then the 1st Reformulated Zagreb index of 

(𝐴𝑃𝐷[𝑛]) is given as : 

𝑅𝑀1(𝐴𝑃𝐷[𝑛])  = 621 ∗ 2𝑛 − 537. 

Proof: To confirm and compute the result of 1st Reformulated Zagreb 

Polynomial, which is denoted by 𝑅𝑀1(𝐴𝑃𝐷[𝑛], 𝑥) , of the dendrimer  

(𝐴𝑃𝐷[𝑛]), we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This 

yields: 

𝑑

𝑑(𝑥)
[ 𝑅𝑀1(𝐴𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1= (3 ∗ 2𝑛)𝑥 + (9 ∗ 2𝑛 − 9)𝑥4 

+(48 ∗ 2𝑛 − 39)𝑥9 + (6 ∗ 2𝑛 − 6)𝑥25. 

Thus, the 1st Reformulated Zagreb Index of the porphyrin dendrimer is 

(𝐴𝑃𝐷[𝑛])  verified as: 

𝑅𝑀1(𝐴𝑃𝐷[𝑛])  = 621 ∗ 2𝑛 − 537. 

Theorem 4.1.3:Let n ∈ N, then the 2nd  Reformulated Zagreb Polynomial of 

(𝐴𝑃𝐷[𝑛]) is define as : 

𝑅𝑀2(𝐴𝑃𝐷[𝑛], 𝑥) = (3 ∗ 2𝑛 ) 𝑥2 + (3 ∗ 2𝑛 − 3 ) 𝑥6 + (6 ∗ 2𝑛 − 6)𝑥8 + (6 ∗

2𝑛 − 6)𝑥12 + (42 ∗ 2𝑛 − 33) 𝑥18 + (6 ∗ 2𝑛 − 6) 𝑥60 

Proof: The edge set of aminoisophthalate dister monomer dendrimer 

(𝐴𝑃𝐷[𝑛])  is divided in to six sets 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define 

as follow. See table 4.1. 
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| 𝐸1(𝐴𝑃𝐷[𝑛]) | it has  3 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸2(𝐴𝑃𝐷[𝑛])| it has  3 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]) . 

| 𝐸3(𝐴𝑃𝐷[𝑛])| it has  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸4(𝐴𝑃𝐷[𝑛])| it has  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸5(𝐴𝑃𝐷[𝑛])| it has  42 ∗ 2𝑛 − 33 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸6(𝐴𝑃𝐷[𝑛])| it has  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]).  

𝑅𝑀2(𝐴𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈E(G)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸4(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸5(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸6(G)  

= (3 ∗ 2𝑛 ) 𝑥(1+2−2)(1∗2) + (3 ∗ 2𝑛 − 3 ) 𝑥(1+3−2)(1∗3) + (6 ∗ 2𝑛 −

6)𝑥(1+4−2)(1∗4) + (6 ∗ 2𝑛 − 6)𝑥(2+2−2)(2∗2) + (42 ∗ 2𝑛 −

33) 𝑥(2+3−2)(2∗3) + (6 ∗ 2𝑛 − 6) 𝑥(3+4−2)(3∗4). 

 𝑅𝑀2(𝐴𝑃𝐷[𝑛], 𝑥)     = (3 ∗ 2𝑛 ) 𝑥2 + (3 ∗ 2𝑛 − 3 ) 𝑥6 + (6 ∗ 2𝑛 − 6)𝑥8 +

(6 ∗ 2𝑛 − 6)𝑥12 + (42 ∗ 2𝑛 − 33) 𝑥18 + (6 ∗ 2𝑛 − 6) 𝑥60 
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Corollary 4.1.3: Let n ∈ N, then the 2nd  Reformulated Zagreb index of 

(𝐴𝑃𝐷[𝑛]) is given as : 

𝑅𝑀2(𝐴𝑃𝐷[𝑛])  = 1260 ∗  2𝑛 − 1092. 

Proof: To confirm and compute the result of 2nd  Reformulated Zagreb 

Polynomial, which is denoted by 𝑅𝑀2(𝐴𝑃𝐷[𝑛], 𝑥)  , of the dendrimer  

(𝐴𝑃𝐷[𝑛]) , we differentiate it with respect to 𝑥, evaluating at 𝑥 = 1, This 

yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀2(𝐴𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1 = (3 ∗ 2𝑛 ) 𝑥2 + (3 ∗ 2𝑛 − 3 ) 𝑥6 + (6 ∗ 2𝑛 −

6)𝑥8 + (6 ∗ 2𝑛 − 6)𝑥12 + (42 ∗ 2𝑛 − 33) 𝑥18 + (6 ∗ 2𝑛 − 6) 𝑥60. 

Thus, the 2nd  Reformulated Zagreb Index of the porphyrin dendrimer is 

(𝐴𝑃𝐷[𝑛])  verified as: 

𝑅𝑀2(𝐴𝑃𝐷[𝑛])  = 1260 ∗  2𝑛 − 1092. 

Theorem4.1.4: Let n ∈ N, then the Edge Irregularity Polynomial of 

(𝐴𝑃𝐷[𝑛]) is define as : 

𝐼𝑅 (𝐴𝑃𝐷[𝑛], 𝑥)  = (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 − 3)𝑥2 + (6 ∗

2𝑛 − 6)𝑥3. 

Proof: The edge set of aminoisophthalate dister monomer dendrimer 

(𝐴𝑃𝐷[𝑛])  is divided in to six sets 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define 

as follow. See table 4.1. 

| 𝐸1(𝐴𝑃𝐷[𝑛])  | include  3 ∗ 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 
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| 𝐸2(𝐴𝑃𝐷[𝑛])| include  3 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]) . 

| 𝐸3(𝐴𝑃𝐷[𝑛])| include  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸4(𝐴𝑃𝐷[𝑛])| include  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸5(𝐴𝑃𝐷[𝑛])| include  42 ∗ 2𝑛 − 33 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸6(𝐴𝑃𝐷[𝑛])| include  6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]).  

𝐼𝑅 (𝐴𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈E(G)  

= ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸1(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸3(G) +

∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸4(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|

 𝑠𝑣∈𝐸5(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸6(G)  

= (3 ∗ 2𝑛)𝑥|1− 2| + (3 ∗ 2𝑛 − 3) 𝑥|1− 3| + (6 ∗ 2𝑛 − 6)𝑥|1−4| + (6 ∗ 2𝑛 −

6) 𝑥|2− 2| + (42 ∗ 2𝑛 − 33) 𝑥|2−3| + (6 ∗ 2𝑛 − 6)𝑥|3− 4|. 

  𝐼𝑅 (𝐴𝑃𝐷[𝑛], 𝑥) = (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 − 3)𝑥2 

+(6 ∗ 2𝑛 − 6)𝑥3. 
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Corollary 4.1.4: Let n ∈ N, then the Edge Irregularity index of (𝐴𝑃𝐷[𝑛]) is 

given as : 

𝐼𝑅 (𝐴𝑃𝐷[𝑛]) = 75 ∗ 2𝑛 − 63. 

Proof: To demonstrate the result of Edge Irregularity Polynomial, which is 

denoted by 𝐼𝑅 (𝐴𝑃𝐷[𝑛], 𝑥) , of the dendrimer  (𝐴𝑃𝐷[𝑛]), we differentiate it 

with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐼𝑅 (𝐴𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1 =   (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 −

3)𝑥2 + (6 ∗ 2𝑛 − 6)𝑥3. 

Thus, the Edge Irregularity Index of the porphyrin dendrimer is 

(𝐴𝑃𝐷[𝑛]) verified as: 

𝐼𝑅 (𝐴𝑃𝐷[𝑛]) = 75 ∗ 2𝑛 − 63. 

Theorem4.1.5: Let n ∈ N, then the Degree Edge Stability Polynomial of 

(𝐴𝑃𝐷[𝑛])is given as : 

𝐷𝑆 (𝐴𝑃𝐷[𝑛], 𝑥)  = (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 − 3)𝑥4 +

(6 ∗ 2𝑛 − 6)𝑥9 

Proof: The edge set of aminoisophthalate dister monomer dendrimer 

(𝐴𝑃𝐷[𝑛])  is divided in to six sets 𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5and 𝐸6. Which are define 

as follow. See table 4.1. 

| 𝐸1(𝐴𝑃𝐷[𝑛])  | consists 3 ∗ 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 
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| 𝐸2(𝐴𝑃𝐷[𝑛])| consists 3 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]) . 

| 𝐸3(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸4(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸5(𝐴𝑃𝐷[𝑛])| consists 42 ∗ 2𝑛 − 33 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]). 

| 𝐸6(𝐴𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 6 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 3 , 𝑑(𝑣) = 4, 

where 𝑠𝑣 ∈ 𝐸 (𝐴𝑃𝐷[𝑛]).  

𝐷𝑆 (𝐴𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈E(G) . 

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(G) +

∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸4(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸5(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸6(G)  

= (3 ∗ 2𝑛 ) 𝑥(1−2)2
+ (3 ∗ 2𝑛 − 3) 𝑥(1−3)2

+ (6 ∗ 2𝑛 − 6)𝑥(1−4)2
+ (6 ∗

2𝑛 − 6)𝑥(2−2)2
+ (42 ∗ 2𝑛 − 33) 𝑥(2−3)2

+ (6 ∗ 2𝑛 − 6) 𝑥(3−4)2
 

𝐷𝑆 (𝐴𝑃𝐷[𝑛], 𝑥)  = (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 − 3)𝑥4 +

(6 ∗ 2𝑛 − 6)𝑥9. 
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Corollary 4.1.5: Let n ∈ N, then the Degree Edge Stability index of 

(𝐴𝑃𝐷[𝑛]) is given as : 

𝐷𝑆 (𝐴𝑃𝐷[𝑛]) = 117 ∗ 2𝑛 − 105. 

Proof: To evaluate the result of Degree Edge Stability Polynomial, which is 

denoted by 𝐷𝑆 (𝐴𝑃𝐷[𝑛], 𝑥) , of the dendrimer  (𝐴𝑃𝐷[𝑛]), we differentiate it 

with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐷𝑆 (𝐴𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1 =  (6 ∗ 2𝑛 − 6) + (51 ∗ 2𝑛 − 39)𝑥 + (3 ∗ 2𝑛 −

3)𝑥4 + (6 ∗ 2𝑛 − 6)𝑥9 

Thus, the Edge Irregularity Index of the porphyrin dendrimer is 

(𝐴𝑃𝐷[𝑛]) verified as: 

𝐷𝑆 (𝐴𝑃𝐷[𝑛]) = 117 ∗ 2𝑛 − 105. 
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4.2 Computation of Topological Indices and Polynomials of Poly 

(Amidoamine) Dendrimer (𝑷𝑫[𝒏]). 
Proposition 4.2:[41] It considered the first type of dendrimer (𝑃𝐷[𝑛])then: 

1. Order of (𝑃𝐷[𝑛]) is 12 ∗ 2𝑛+2 − 14 

2. Size of (𝑃𝐷[𝑛]) is 12 ∗ 2𝑛+2 − 15. See figure 4.2 

 

 

 

 

 

 

 

 

 

Figure 4.2: dendrimers (𝑃𝐷[𝑛]) is also known as poly (amidoamine). 

  (𝑃𝐷[𝑛]) stretcher made up of four types of edges based on degree of end 

vertices of each as given in table 4.2. 
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Table 4.2: Graph of the stretcher (𝑃𝐷[𝑛]). 

(𝑑𝑠, 𝑑𝑣) (1,2) (1,3) (2,2) (2,3) 

No. of 

edges  

3 ∗ 2𝑛 6 ∗ 2𝑛 − 3 18 ∗ 2𝑛 21 ∗ 2𝑛 − 12 

 

First of all, we are going to calculate the Augmented Zagreb polynomial for 

the molecular (𝑃𝐷[𝑛]). 

Theorem 4.2.1: Let n ∈ N, then the Augmented Zagreb polynomial of 

(𝑃𝐷[𝑛]) is given as : 

AZP(𝑃𝐷[𝑛], 𝑥) = (42 ∗ 2𝑛 − 12)𝑥8 + (6 ∗ 2𝑛 − 3) 𝑥  
27

8  

Proof: The edge set of poly (amidoamine) dendrimer  (𝑃𝐷[𝑛])  is divided in 

to four sets 𝐸1, 𝐸2, 𝐸3, 𝑎𝑛𝑑 𝐸4. Which are define as follow. See table 4.2. 

| 𝐸1(𝑃𝐷[𝑛]) | contain  3 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸2(𝑃𝐷[𝑛])| contain  6 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]) . 

| 𝐸3(𝑃𝐷[𝑛]) | contain  18 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸4(𝑃𝐷[𝑛])| contain  21 ∗ 2𝑛 − 12 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

AZP (𝑃𝐷[𝑛], 𝑥)  = ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈E(G)  
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= ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸1(G) + ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸2(G) +

∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸3(G) + ∑ 𝑥
(

d(s) ∗ d(𝑣) 

d(s)+ d(𝑣)−2
)3

 𝑠𝑣∈𝐸4(G)  

= (3 ∗ 2𝑛) 𝑥(
1∗2

1+2−2
)3

+ (6 ∗ 2𝑛 − 3 ) 𝑥(
1∗3

1+3−2
)3

+ (18 ∗ 2𝑛) 𝑥(
2∗2

2+2−2
)3

+ (21 ∗

2𝑛 − 12) 𝑥(
2∗3

2+3−2
)3

. 

AZI(𝑃𝐷[𝑛] , 𝑥) = (42 ∗ 2𝑛 − 12)𝑥8 + (6 ∗ 2𝑛 − 3) 𝑥  
27

8 . 

Corollary 4.2.1: Let n ∈ N, then the Augmented Zagreb index of (𝑃𝐷[𝑛] ) is 

given as : 

AZI (𝑃𝐷[𝑛]) = 356.25 ∗ 2𝑛  − 106.125 

Proof: By using a similar approach we  conclude the result by evaluating the 

polynomial at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ AZP(𝑃𝐷[𝑛] , 𝑥) ]  𝑥=1= (42 ∗ 2𝑛 − 12)𝑥8 +  (6 ∗ 2𝑛 − 3) 𝑥  

27

8  

Thus, the Augmented Zagreb Index of the poly (amidoamine) dendrimer is 

(𝑃𝐷[𝑛]) verified as: 

AZI (𝑃𝐷[𝑛]) = 356.25 ∗ 2𝑛  − 106.125. 

Theorem 4.2.2: Let n ∈ N, then the 1st  Reformulated Zagreb Polynomial of 

(𝑃𝐷[𝑛])is define as : 

𝑅𝑀1(𝑃𝐷[𝑛], 𝑥)= (3 ∗ 2𝑛)𝑥 + (24 ∗ 2𝑛 − 3)𝑥4 + (21 ∗ 2𝑛 − 12)𝑥9. 

Proof: The edge set of poly (amidoamine) dendrimer  (𝑃𝐷[𝑛])  is divided in 

to four sets 𝐸1, 𝐸2, 𝐸3, 𝑎𝑛𝑑 𝐸4. Which are define as follow. See table 4.2. 
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| 𝐸1(𝑃𝐷[𝑛])  | have 3 ∗ 2𝑛 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸2(𝑃𝐷[𝑛]) | have 6 ∗ 2𝑛 − 3  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]) . 

| 𝐸3(𝑃𝐷[𝑛])| have 18 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸4(𝑃𝐷[𝑛]) | have 21 ∗ 2𝑛 − 12  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

𝑅𝑀1(𝑃𝐷[𝑛]) , 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈E(G)  

= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸1(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸2(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸3(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)2

 𝑠𝑣∈ 𝐸4(G) + 

= (3 ∗ 2𝑛) 𝑥(1+2−2)2
+ (6 ∗ 2𝑛 − 3) 𝑥(1+3−2)2

+ (18 ∗ 2𝑛) 𝑥(2+2−2)2
+

(21 ∗ 2𝑛 − 12 ) 𝑥(2+3−2)2
. 

𝑅𝑀1(𝑃𝐷[𝑛], 𝑥)   = (3 ∗ 2𝑛)𝑥 + (24 ∗ 2𝑛 − 3)𝑥4 + (21 ∗ 2𝑛 − 12)𝑥9. 

Corollary 4.2.2: Let n ∈ N, then the 1st Reformulated Zagreb index of 

(𝑃𝐷[𝑛] ) is given as : 

𝑅𝑀1(𝑃𝐷[𝑛])  = 288 ∗ 2𝑛 − 120. 

Proof: To confirm the result of 1st Reformulated Zagreb Polynomial, which 

is denoted by 𝑅𝑀1(𝑃𝐷[𝑛], 𝑥), of the dendrimer  (𝑃𝐷[𝑛]), we differentiate it 

with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 
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𝑑

𝑑(𝑥)
[ 𝑅𝑀1(𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1= (3 ∗ 2𝑛)𝑥 + (24 ∗ 2𝑛 − 3)𝑥4 

+(21 ∗ 2𝑛 − 12)𝑥9 

Thus, the 1st Reformulated Zagreb Index of the poly (amidoamine)  dendrimer 

is (𝑃𝐷[𝑛])  verified as: 

𝑅𝑀1(𝑃𝐷[𝑛])  = 288 ∗ 2𝑛 − 120. 

Theorem 4.2.3:Let n ∈ N, then the 2nd  Reformulated Zagreb Polynomial of 

(𝑃𝐷[𝑛])is define as : 

𝑅𝑀2(𝑃𝐷[𝑛], 𝑥)=(3 ∗ 2𝑛 )𝑥2 + (6 ∗ 2𝑛 − 3 )𝑥6 + (18 ∗ 2𝑛)𝑥8 + (21 ∗ 2𝑛 −

12)𝑥18 

Proof: The edge set of poly (amidoamine) dendrimer  (𝑃𝐷[𝑛])  is divided in 

to four sets 𝐸1, 𝐸2, 𝐸3, 𝑎𝑛𝑑 𝐸4. Which are define as follow. See table 4.2. 

| 𝐸1(𝑃𝐷[𝑛]) | Be composed of 3 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 

 𝑑(𝑣) = 2, where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸2(𝑃𝐷[𝑛]) | Be composed of  6 ∗ 2𝑛 − 3  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1  , 

𝑑(𝑣) = 3, where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]) . 

| 𝐸3(𝑃𝐷[𝑛])| Be composed of 18 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) =

2, where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸4(𝑃𝐷[𝑛])| Be composed of 21 ∗ 2𝑛 − 12 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 

𝑑(𝑣) = 3, where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

𝑅𝑀2(𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈E(G) . 
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= ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸1(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸2(G) +

∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))
 𝑠𝑣∈𝐸3(G) + ∑ 𝑥(𝑑(𝑠)+𝑑(𝑣)−2)(𝑑(𝑠)∗𝑑(𝑣))

 𝑠𝑣∈𝐸4(G) + 

= (3 ∗ 2𝑛 )𝑥(1+2−2)(1∗2) + (6 ∗ 2𝑛 − 3 )𝑥(1+3−2)(1∗3) + (18 ∗

2𝑛)𝑥(2+2−2)(2∗2) + (21 ∗ 2𝑛 − 12)𝑥(2+3−2)(2∗3). 

 𝑅𝑀2(𝑃𝐷[𝑛], 𝑥) =   (3 ∗ 2𝑛 )𝑥2 + (6 ∗ 2𝑛 − 3 )𝑥6 + (18 ∗ 2𝑛)𝑥8 +

(21 ∗ 2𝑛 − 12)𝑥18. 

Corollary 4.2.3: Let n ∈ N, then the 2nd  Reformulated Zagreb index of 

(𝑃𝐷[𝑛] ) is given as : 

𝑅𝑀2(𝑃𝐷[𝑛])  = 564 ∗ 2𝑛 − 234. 

Proof: To compute the result of 2nd  Reformulated Zagreb Polynomial, which 

is denoted by 𝑅𝑀2(𝑃𝐷[𝑛], 𝑥) , of the dendrimer  (𝑃𝐷[𝑛]) , we differentiate it 

with respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝑅𝑀2(𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1= (3 ∗ 2𝑛 )𝑥2 + (6 ∗ 2𝑛 − 3 )𝑥6 +

(18 ∗ 2𝑛)𝑥8 + (21 ∗ 2𝑛 − 12)𝑥18 

Thus, the 2nd  Reformulated Zagreb Index of the poly (amidoamine)  

dendrimer is (𝑃𝐷[𝑛]) verified as: 

𝑅𝑀2(𝑃𝐷[𝑛])  = 564 ∗ 2𝑛 − 234. 
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Theorem4.2.4: Let n ∈ N, then the Edge Irregularity Polynomial of (𝑃𝐷[𝑛])is 

define as : 

𝐼𝑅 (𝑃𝐷[𝑛], 𝑥) = (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 + (6 ∗ 2𝑛 − 3)𝑥2. 

Proof: The edge set of poly (amidoamine) dendrimer  (𝑃𝐷[𝑛])  is divided in 

to four sets 𝐸1, 𝐸2, 𝐸3, 𝑎𝑛𝑑 𝐸4. Which are define as follow. See table 4.2. 

| 𝐸1(𝑃𝐷[𝑛]) | consists 3 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸2(𝑃𝐷[𝑛])| consists 6 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]) . 

| 𝐸3(𝑃𝐷[𝑛]) | consists 18 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸4(𝑃𝐷[𝑛])| consists 21 ∗ 2𝑛 − 12 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

𝐼𝑅 (𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈E(G)  

= ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸1(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸3(G) +

∑ 𝑥| 𝑑(𝑠)− 𝑑(𝑣)|
 𝑠𝑣∈𝐸4(G) . 

= (3 ∗ 2𝑛)𝑥|1− 2| + (6 ∗ 2𝑛 − 3)𝑥|1− 3| + (18 ∗ 2𝑛)𝑥|2−2| + (21 ∗ 2𝑛 −

12)𝑥|2−3|. 

  𝐼𝑅 (𝑃𝐷[𝑛], 𝑥) = (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 + (6 ∗ 2𝑛 − 3)𝑥2. 
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Corollary 4.2.4: Let n ∈ N, then the Edge Irregularity index of (𝑃𝐷[𝑛] ) is 

given as : 

𝐼𝑅 (𝑃𝐷[𝑛]) = 36 ∗ 2𝑛 − 18. 

Proof: To demonstrate the result of Edge Irregularity Polynomial, which is 

denoted by 𝐼𝑅 (𝑃𝐷[𝑛], 𝑥) , of the dendrimer (𝑃𝐷[𝑛]), we differentiate it with 

respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐼𝑅 (𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1 =  (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 + (6 ∗ 2𝑛 −

3)𝑥2. 

Thus, the Edge Irregularity Index of the poly (amidoamine)  dendrimer is 

(𝑃𝐷[𝑛]) verified as: 

𝐼𝑅 (𝑃𝐷[𝑛]) = 36 ∗ 2𝑛 − 18. 

Theorem4.2.5: Let n ∈ N, then the Degree Edge Stability Polynomial of 

(𝑃𝐷[𝑛]) is given as : 

𝐷𝑆 (𝑃𝐷[𝑛], 𝑥) = (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 + (6 ∗ 2𝑛 − 3)𝑥4. 

Proof: The edge set of poly (amidoamine) dendrimer  (𝑃𝐷[𝑛])  is divided in 

to four sets 𝐸1, 𝐸2, 𝐸3, 𝑎𝑛𝑑 𝐸4. Which are define as follow. See table 4.2. 

| 𝐸1(𝑃𝐷[𝑛]) | include  3 ∗ 2𝑛 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 2, where 

𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸2(𝑃𝐷[𝑛])| include  6 ∗ 2𝑛 − 3 edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 1 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]) . 
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| 𝐸3(𝑃𝐷[𝑛]) | include  18 ∗ 2𝑛  edges of type 𝑠, 𝑣  s.t 𝑑(𝑠) = 2  , 𝑑(𝑣) = 2, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

| 𝐸4(𝑃𝐷[𝑛])| include  21 ∗ 2𝑛 − 12 edges of type 𝑠, 𝑣 s.t 𝑑(𝑠) = 2 , 𝑑(𝑣) = 3, 

where 𝑠𝑣 ∈ 𝐸 (𝑃𝐷[𝑛]). 

𝐷𝑆 (𝑃𝐷[𝑛], 𝑥) = ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈E(G)  

= ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸1(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸2(G) + ∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸3(G) +

∑ 𝑥(𝑑(𝑠)−𝑑(𝑣))2

 𝑠𝑣∈𝐸4(G) . 

= (3 ∗ 2𝑛 )𝑥(1−2)2
+ (6 ∗ 2𝑛 − 3)𝑥(1−3)2

+ (18 ∗ 2𝑛)𝑥(2−2)2
 

+(21 ∗ 2𝑛 − 12)𝑥(2−3)2
. 

𝐷𝑆 (𝑃𝐷[𝑛], 𝑥) = (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 + (6 ∗ 2𝑛 − 3)𝑥4 

Corollary 4.2.5: Let n ∈ N, then the Degree Edge Stability index of 

(𝑃𝐷[𝑛] ) is given as : 

𝐷𝑆 (𝑃𝐷[𝑛]) = 48 ∗ 2𝑛 − 24. 

Proof: To calculate the result of Degree Edge Stability Polynomial, which is 

denoted by 𝐷𝑆 (𝑃𝐷[𝑛], 𝑥) , of the dendrimer  (𝑃𝐷[𝑛]), we differentiate it with 

respect to 𝑥, evaluating at 𝑥 = 1, This yields: 

 
𝑑

𝑑(𝑥)
[ 𝐷𝑆 (𝑃𝐷[𝑛], 𝑥)]⎹ 𝑥=1= (18 ∗ 2𝑛) + (24 ∗ 2𝑛 − 12)𝑥 

+(6 ∗ 2𝑛 − 3)𝑥4. 
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Thus, the Edge Irregularity Index of the poly (amidoamine) dendrimer is 

(𝑃𝐷[𝑛]) verified as: 

𝐷𝑆 (𝑃𝐷[𝑛]) = 48 ∗ 2𝑛 − 24. 
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Chapter Five 

Differences Between Augmented Zagreb Index and 

Edges Irregularity Index. 
Introduction: we examine new mathematical relationships between two 

significant degree-based topological indices. the Augmented Zagreb Index 

(AZI) and the Edge Irregular Stability Index (EIS). Using the classical 

inequalities Cauchy-Schwarz and Jensen's inequalities, we derive new upper 

and lower bounds for these indices. These bounds enhance our understanding 

of the structural behavior of graphs and provide useful tools in chemical graph 

theory. Prior to declaring the main results, we recall basic inequalities that are 

at the heart of our derivations. 

1. Cauchy- Schwarz inequality: [34,42] if 𝑎1, ….  , 𝑎𝑛 and 𝑏1, ….  , 𝑏𝑛 are 

real number  

Than 

(∑ 𝑎𝑖𝑏𝑖

𝑛

𝑖=1

)

2

≤  (∑ 𝑎𝑖
2

𝑛

𝑖=1

) (∑ 𝑏𝑖
2

𝑛

𝑖=1

) 

 

Or 

|∑ 𝑎𝑖𝑏𝑖

𝑛

𝑖=1

| ≤  √∑ 𝑎𝑖
2

𝑛

𝑖=1

√∑ 𝑏𝑖
2

𝑛

𝑖=1

 

2. Jensen’s inequality: [35] let 𝑓(𝑥)  be a convex function defined on 

interval 𝐼 if 𝑥𝑖 , ….  , 𝑥𝑛 ∈ 𝐼 and 𝜆1, ….  , 𝜆𝑛 ≥ 0 with ∑ 𝜆𝑖
𝑛
𝑖=1   then  

𝑓 (∑ 𝜆𝑖

𝑛

𝑖=1

 𝑥1) ≤  ∑ 𝜆𝑖

𝑛

𝑖=1

  f(𝑥𝑖)   
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5.1: Relation between Augmented Zagreb index and Edge 

Irregularity Stability index.  
In this section we introduce a link with the Augmented Zagreb Index 

and the Edge Irregular Stability Index. Such indices have different degree 

values on which they depend, but can be linked via inequalities and structural 

graph properties. 

Proposition 5.1: [32,33] Let 𝐺 be connected graph with 𝑚 edges. Then   

𝐴𝑍𝐼(𝐺) =  ∑ (
𝑑𝑠∗𝑑𝑣

𝑑𝑠+𝑑𝑣−2
)3

𝑠𝑣∈𝐸(𝐺) .   Using Jensen’s Inequality with the convex 

function 𝑓(𝑥) =  𝑥3  so, we will have 

𝐴𝑍𝐼(𝐺) ≥ 𝑚 (
1

𝑚
∑ (

𝑑𝑠∗𝑑𝑣

𝑑𝑠+𝑑𝑣−2
)3)𝑠𝑣∈𝐸(𝐺) . 

Let us denoted this average value by A =  
1

𝑚
∑ (

𝑑𝑠∗𝑑𝑣

𝑑𝑠+𝑑𝑣−2
)3)𝑠𝑣∈𝐸(𝐺) . So,  

𝐴𝑍𝐼(𝐺) ≥ 𝑚 (𝐴)3 

To bound 𝐴, note that the denominator: 𝑑𝑠 + 𝑑𝑣 − 2 ≥ |𝑑𝑠 − 𝑑𝑣| , thus  

𝑑𝑠∗𝑑𝑣

𝑑𝑠+𝑑𝑣−2
≥  

𝑑𝑠∗𝑑𝑣

|𝑑𝑠−𝑑𝑣|+2
 . By using Cauchy – Schwarz inequality: 

 (∑ 𝑑𝑠𝑑𝑣𝑠𝑣∈𝐸(𝐺) )2 ≤ 𝑚 ∑ (𝑑𝑠 ∗ 𝑑𝑣)2
𝑠𝑣∈𝐸(𝐺) . If we combine both side, we get 

that.  

𝐴𝑍𝐼(𝐺) ≥
1

𝑚2
  (∑ 𝑑𝑠𝑑𝑣𝑠𝑣∈𝐸(𝐺) )3⧸(∑ |𝑑𝑠 − 𝑑𝑣|𝑠𝑣∈𝐸(𝐺) )3 . It was proved 

𝐸𝐼𝑆 (𝐺) ≠ 0  

If we let:  

𝑆1 =  (∑ 𝑑𝑠𝑑𝑣𝑠𝑣∈𝐸(𝐺) )3  and  𝑆2 =  (∑ |𝑑𝑠 − 𝑑𝑣|𝑠𝑣∈𝐸(𝐺) )3. 
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Then by Holder’s inequality (in a generalized form), we approximate 

𝐴𝑍𝐼(𝐺) ≥
𝑆1

𝑚2(𝑆2)
 

This connects the AZI to the irregularity measured by EIS. 

Example: 5.1.1: Consider the star graph 𝑆𝑛 it has one central vertex of degree 

𝑛 − 1 𝑎𝑛𝑑 𝑛 − 1  leaves of degree 1. Than,  

𝐸𝐼𝑆(𝑆𝑛) = (𝑛 − 1)(𝑛 − 2),      and           𝐴𝑍𝐼 (𝑆𝑛) = (𝑛 − 1)(
𝑛−1

𝑛−2
) 

Now let us to compute: 

𝑆1 = (𝑛 − 1)(𝑛 − 1),              and                  𝑆2 = (𝑛 − 1)(𝑛 − 2) 

Thus;  

                                 𝐴𝑍𝐼 (𝑆𝑛) ≥
(𝑛−1)3

(𝑛−1)2(𝑛−2)3
       ;       Simplify 

𝐴𝑍𝐼 (𝑆𝑛) ≥
𝑛 − 1

(𝑛 − 2)3
 

𝐴𝑍𝐼 (𝑆𝑛) =  (
1

𝑛 − 2
)3 

Let 𝑚 = 𝑛 − 1 and we will multiply by 𝑚 we recover . 

𝐴𝑍𝐼 (𝑆𝑛) ≥ (𝑛 − 1)(
1

𝑛 − 2
)3 

Matching the earlier exact formula.  
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Example 5.1.2: consider the complete graph 𝐾𝑛, has all vertex degrees are 

equal (𝑑 = 𝑛 − 1). So,  

𝐸𝐼𝑆 (𝐾𝑛) = 0                             and               𝐴𝑍𝐼 (𝐾𝑛) = (
𝑛
2

) (
(𝑛−1)2

2(𝑛−1)−2
)3 

This shows that whenever the graph is regular  (𝑑𝑢 = 𝑑𝑣) , the n 𝐴𝑍𝐼 is 

maximal in uniform degree graphs while 𝐸𝐼𝑆 vanishes.  

Example 5.1.3: Let 𝐺 be a path graph 𝑃4  with vertices of degrees (1,2,2,1). 

Than;  

𝐸𝐼𝑆 (𝑃𝑛)  = |1 − 2| + |2 − 2| + |2 − 1|  = 2. When edges are 

(1,2), (2,2), (2,1). And;  

𝐴𝑍𝐼(𝑃𝑛) =  (
1 ∗ 2

1 + 2 − 2
)3 + (

2 ∗ 2

2 + 2 − 2
)3 + (

2 ∗ 1

2 + 1 − 2
)3 

𝐴𝑍𝐼(𝑃𝑛) = 20 

Now, compute  

𝑆1 = 1.2 + 2.2 + 2.1  

𝑆1 = 8 

𝑆2 = 1 + 0 + 1  

 

𝑆2 = 2 , Let 𝑚 = 3; 

𝐴𝑍𝐼(𝑃𝑛) ≥ (
8

32 ∗ 2
) =  

512

72
 ≈ 7.11 
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 5.2: New upper and lower bounds of Augmented Zagreb index 

AZI(G) 
 

Theorem 5.2.1: Let 𝐺 be a graph with minimum degree 𝛿 , maximum 

degree Δ , and  𝑚 edges. Then, 

𝐴𝑍𝐼(𝐺) ≥ 𝑚 (
𝛿2

2Δ − 2
)

3 

  

Proof: Since 𝑑𝑠 ≥ 𝛿 and  𝑑𝑣 ≥ 𝛿 if follows that the numerator 𝑑𝑠𝑑𝑣 ≥ 𝛿2. 

Meanwhile, the maximum possible denominator is  𝑑𝑠 + 𝑑𝑣 − 2 ≤ 2∆ − 2 

therefor for every edge 𝑠𝑣 ∈ 𝐸(𝐺). 

(
𝑑𝑠𝑑𝑣

𝑑𝑠 + 𝑑𝑣 − 2
)𝟑  ≥ (

𝛿2

2Δ − 2
)

3 

  

Now summing over all m edges we get.  

𝐴𝑍𝐼(𝐺) ≥ 𝑚 (
𝛿2

2Δ − 2
)

3 

 

Equality holds if and only if all vertex degrees equal 𝛿 and 𝑑𝑠 + 𝑑𝑣 − 2 =

2∆ − 2, i.e. the graph is regular.  

 

 

 

 

 



Chapter Five: Differences Between Augmented Zagreb Index and 

Edges Irregularity Index. 

 

83 
 

Theorem 5.2.2: Under the same conditions we have the upper bound  

𝐴𝑍𝐼(𝐺) ≤  𝑚 (
∆2

2δ − 2
)

3 

 

Proof: Here, 𝑑𝑠 ≤  ∆ and  𝑑𝑣 ≤ ∆ if follows that the numerator 𝑑𝑠𝑑𝑣 ≤ ∆2. 

Meanwhile, the minimum possible denominator is  𝑑𝑠 + 𝑑𝑣 − 2 ≥ 2𝛿 − 2 

therefor for every edge 𝑢𝑣 ∈ 𝐸(𝐺).  

𝐴𝑍𝐼(𝐺) ≤  𝑚 (
∆2

2δ − 2
)

3 

 

The equality is attained when all degrees are equal to ∆.  
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5.3: New Upper and Lower Bounds of Edges Irregularity 

Stability Index EIS (G)  
Theorem: 5.3.1: [16,17] For a graph 𝐺  with 𝑚 edges and degree range 

𝛿 𝑡𝑜 ∆.  

EIS (G) ≥ |∆ − δ| 

Proof:  at minimum if only one edge in the graph connects vertices of degrees  

𝛿 𝑎𝑛𝑑 ∆ than the sum is at least  |∆ − δ| therefor  

EIS (G) ≥ |∆ − δ| 

Equality holds if and only if all other edges contributes zero (i.e., they connect 

verities of equal degrees).  

Theorem: 5.3.2: [9,32] Under the same condition  

EIS (G) ≤ 𝑚 |∆ − δ| 

Proof: since the maximum absolute difference for any edges 𝑢𝑣 ∈ 𝐸(𝐺) is 

∆ − 𝛿 the sum over all 𝑚 edges is bounded above by .  

EIS (G) ≤ 𝑚 (∆ − δ) 

Equality holds in highly irregular graphs like star graphs. 

Example 5.3.1: consider the star graph 𝑆𝑛 where one vertex has degrees  𝑛 −

1 and 𝑛 − 1others have degree 1  

Than,  

𝐸𝐼𝑆 (𝑆𝑛) =  ∑|(𝑛 − 1) − 1|

𝑛−1

𝑖=1

= (𝑛 − 1)(𝑛 − 2) 

This is the case of maximum irregularity. 
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Example 5.3.2:  for a complete graph 𝐾𝑛  all degrees are equal, So;  

𝐸𝐼𝑆 (𝐾𝑛) = 0 

This is illustrating the equality case for regular graphs 
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Chapter Six 

Conclusion and Future Studies 

6.1 Conclusion: 
This study applies graph-theoretical tools to investigate the topological 

properties of key dendrimer families such as PETIM, PAMAM, poly 

propylenimine octaamin, zinc porphyrins, and porphyrins. Polynomial 

expressions were derived for several degree-based indices, including the 

Augmented Zagreb Index (AZI), Reformulated Zagreb Indices (RM₁, RM₂), 

the Edge Irregularity Index, and the Degree-Based Stability Index. These 

polynomials provide improved modeling of molecular branching across 

dendrimer generations. Analytical relationships and bounds between AZI and 

the Edge Irregularity Index were also established, offering new mathematical 

insight into molecular irregularity and stability. Overall, this work strengthens 

the theoretical foundation for dendrimer research and suggests new 

applications in chemistry, nanotechnology, and materials science. 
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6.2 Recommendations and Future Studies. 
 

Future research is suggested by this study, as explained below:  

1. The computation of topological indices and new graph polynomials for 

dendrimers that are discussed in the paper.  

2. The investigation of novel dendrimers for the same topological indices and 

graph polynomials that are calculated in this work.  

3. Determining updated upper and lower bounds for the stability Zagreb 

indices based on degree.  

4. Determining the first and second reformulated Zagreb index's new upper 

and lower bounds. 
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 المستخلص

 

س لعدد تركّز هذه الدراسة على حساب وتحليل المؤشرات الطوبولوجية المعتمدة على درجات الرؤو

أحدث مثل مؤشر زغرب المعزز، مؤشري  ؤشرات كلاسيكية من تراكيب الديندريمرات. تم تناول م

زغرب المعاد صياغتهما، مؤشر عدم انتظام الحواف، ومؤشر ثبات درجة الحافة. تم اشتقاق صيغ 

جات، عامة لهذه المؤشرات اعتماداً على معلمات الرسم البياني مثل عدد الرؤوس، الحواف، والدر

,𝐷𝑛)وذلك لتراكيب ديندريمر مختلفة تشمل  𝑃𝑛) ،PETIM ،DPZₙ ،PETAAو ،APD[n] And 

PD[n].  ،كما تسلط الدراسة الضوء على الفروقات بين مؤشري زغرب المعزز وعدم انتظام الحواف

وجية في من خلال تحديد حدود علوية وسفلية جديدة لكليهما. وتدعم النتائج قوة المؤشرات الطوبول

                                                                                        التنبؤ بالبنية الجزيئية وسلوكها
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