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ABSTRACT

This work focuses on computing and determining degree-based
topological indices and its polynomial for various dendrimer including. The
classical ones like the newer ones the Augmented Zagreb,1% and 2"
Reformulated Zagreb, Edge Irregularity, and Degree Edge Stability indices
are taken into consideration. Dendrimers like porphyrin (D,,, B,), Propyl Ether
Imine dendrimers (PETIM), Zinc Porphyrin dendrimers ( DPZ,) Poly
(Ethylene Amide Amine) (PETAA), aminoisophthalate diester monomer
(APD[n]) and Poly (amid amine) (PD[n]) dendrimers. The study also
illustrates the difference between the Augmented Zagreb and Edge
Irregularity indices, obtaining new upper and lower bounds for them. Results
verify the predictive behavior of topological indices for molecular structure
and activity.



INTRODUCTION

INTRODUCTION

Graph theory is a mathematical area dealing with structures composed
of vertices (also called nodes) and edges that connect them. The structures,
also called as graphs, are frequently used to represent linkages and interactions
in a variety of domains, including biology, computer science, chemistry, and
social networking. A chemist uses graph theory to represent molecular
structures, with the atoms as vertices and the chemical bonds as edges. This
approach makes it possible to calculate topological indices, which are
numerical values derived from a graph that can be applied to estimate physical
and chemical molecule properties. If a graph doesn’t include any edges

between the vertices, then it’s called a null graph. [1].

The ordered pair (V(G), E(G)) can be used to represent the graph, where
(V(G)) represents the set of vertices of G and each element inside (V(G)) is
called a vertex or node. Likewise, the set of edges of G is represented by
(E(G). Chemical graph theory has provided researchers in chemistry with a
wide range of very potent analysis methods. In this situation, a molecular
graph provides a graphical representation of a chemical structure using
concepts from graph theory. In these models, the compound's elements are
represented by nodes, while connections depict the interactions among them.
This is the topological subfield of mathematical chemistry where graph theory
is employed to describe and analyze chemical behaviors and structural
properties mathematically. [2].

Alexandru Balaban, Ante Groovac, lvan Gutman, Haruo Hosoya, Milan
Randi¢, and Nenad Trinajsti¢, among others, are considered pioneers in the
field of chemical graph theory. It was reported in 1988 that a large number of

researchers were working in this area, producing approximately 500 articles

2



INTRODUCTION

per year. There have been several monographs that was published in this field,
such as Triassic's two-volume work "Chemical Graph Theory," which
provided a concise overview of the discipline up until the middle of the 1980s,
[3-4].

In terms of mathematics, an undirected graph is called a molecular
graph. G = (S, V), where S is a non-empty set of atom and V is a set of bound.
Let seS is an element of the molecular structure of every vertex, and the vertex
degree is the number of edges it has. Molecular graph structure and
characteristics are studied based on the arrangement and degree of vertices to
obtain various topological indices that represent the molecule's behavior and
properties. A typical example of such indices was provided by Trinajsti¢ et al.
in their work, which discussed m-electron energy in relation to the branching

of molecules. Two traditional indices were given by them as follows:

M1: ZSES d(s)z and M1: stEE d(S). d(v) .

Where d(s) is the degree of vertex s. These indices quantify the branching
degree in molecular structures, the larger values tending to be associated with

more complex molecular structures and smaller total m-electron energy.

Generalizing from graph theory, many other degree-based topological
indices have been constructed to characterize other structural features of
chemical graphs. These include the Augmented Zagreb Index (AZl), which
gives more weight to molecular branching, the First and Second Reformulated
Zagreb Indices (Reix and Re;), which provide edge degree-based
reformulations rather than vertex degree formulations, and the Edge
Irregularity Index, which measures the imbalance in degrees of adjacent

vertices. Additionally, the Degree-Based Stability Index is applied to assess
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structural stability of molecules according to the vertex degree distribution
[5].

A topological indices of a graph, it’s a quantitative parameter about G
that represents its molecular topology by encoding necessary structural
features of the graph. Indices are graph operations invariant, e.g., relabeling
vertices, reordering edges, or isomorphism, in such a way that the numerical
value describes intrinsic properties of the molecular structure and not arbitrary
representations. Topological indices are thus very useful in drug design,
material science, and molecular chemistry. We are concerned here to compute
some important topological indices of some chemical structures so that we

can know their structural features and potential chemical properties. [6].

Graph polynomials are algebraic polynomials on graphs that
compactly embody important structural information. Graph polynomials, as
studied in graph theory and discrete mathematics, are valuable tools for the
study of the complexity, connectedness, and symmetry of molecular graphs.
More specifically, in this thesis, graph polynomials are employed to study
molecular graphs of compounds like porphyrin, propyl ether imine, zinc
porphyrin, and ethylene amide amine dendrimers. These molecules have
intricate architectures that are nicely modeled by graph polynomials, which
enables us to calculate topological invariants to predict their chemical
behavior, stability, and potential applications in materials science and

medicine. [7].

In (2010) B. Furtula, A. Graovac, and D. Vukiéevié. In (2015) F. Zhan,
Y. Qiao, and J. Cai. And in (2016) N. Idrees, A. Sadiq, M. J. Saif, and A. Rauf
, [8-10], define Augmented Zagreb Index (AZI) as a means to improve the
predictive power of classical Zagreb indices, particularly for molecular

4



INTRODUCTION

branching and thermodynamic properties. It employs a more sophisticated
degree-based weighting function, which has made it particularly appealing for
highly branched systems, such as dendrimers.For poly(propylene imine) (PPI)
and poly(amidoamine) (PAMAM) dendrimers. In (2013) V. R. Kulli and 1.
Gutman . In (2017) N. De . In (2024) S. Anwar et.al . In (2014) S. Ji, X. Li,
and Y. Qu, and in (2013) I. Gutman, B. Furtula, and V. R. Kulli. [11-15]
introduced the result for the Reformulated Zagreb Indices, to generalize the
traditional Zagreb indices considering the edge degrees instead of vertex
egrees. They are more responsive to connectivity alterations in graphs and
thus appropriately usable for complex ierarchical architectures like
dendrimers. for the PAMAM dendrimer and the polyetherimide (PETIM)

dendrimer.

In (2015) H. S. Abdo and D. M. Dimitrov, In (2024) M. Imran, and in
(2018) I. Gutman and H. Abdo, [16-18], introduced the Edge Irregularity
Index to quantify structural heterogeneity in terms of degree differences
among neighboring vertices. The index has found broad use to characterize
dendritic macromolecules, with irregular structures often occurring in higher

generations.

In (2012) J. Chen, S. Li, and W. Wang, In (2017) N. De, et.al., In (2019)
L. Yousefi-Azari, M. Saheli, and M. Azari. [19-21] introduced the Degree-
Based Stability Index to measure molecular stability based on vertex degree
distributions. It has been helpful for understanding thermodynamic stability
in arborescent and hyperbranched dendrimers. In (2005) D.A. Tomalia and
J.M. Jansen. developed, in the late 1980s, Polypropylenimine (PPI)
dendrimers that possess a diaminobutane (DAB) core and tertiary amine

branching units. PPl dendrimers are highly defined in their molecular
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architecture and are used extensively in gene delivery and nanomedicine
because of their appropriate surface functionalities and biocompatibility,
[22].In (2008) S. Kulhari, PETIM dendrimers were introduced in the early
2000s as a dendrimer family possessing ether and imine linkages. They are
appealing due to their improved solubility in organic solvents and reduced
cytotoxicity, making them suitable for use in biomedical and pharmaceutical
applications. They are comparatively easy to synthesize compared to other

dendrimer families. [23].

In (1998) G.R. Newkome, Zinc porphyrin dendrimers entrap porphyrin
macrocycles with a zinc metal ion in the center, enabling them to have unique
photochemical and electrochemical properties. The dendrimers that became
popular during the 1990s are widely used in light-harvesting systems,
photodynamic therapy, and solar energy conversion, [24]. In (1985) D.A.
Tomalia, One of the most well studied and oldest dendrimers are PAMAM
dendrimers, which were originally synthesized by Tomalia. they synthesized
via a divergent growth strategy and are noted for their ethylenediamine core
and iteratively repeated amide and amine branching. PAMAM dendrimers
have extensive use in drug and gene delivery, diagnostics, and
nanotechnology, [25]. In (1996) A. Harriman, Porphyrin-dendrimers are
designed by placing porphyrin units at the periphery or core of the dendrimer
system. Porphyrin-dendrimers are of interest for optoelectronics,
photodynamic therapy, and catalysis due to the photo absorbing and redox
activity of porphyrins. [26]. In (2016) Che, Z., & Chen, Z , define Lower and
Upper Bounds of the Forgotten Topological Index, [27]. In (2020) Lin, W.,
Dimitrov, D., & Skrekovski, R. define the maximal of the Augmented Zagreb
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index. In (2013) N. E. Arif and R. Hasni, define the connectivity index of
PAMAM dendrimers, [28].

In (2013) N. E. Arif, studied Graph Polynomials and Topological
Indices of Some Dendrimers, [29]. In (2016) M. N. Husin, R. Hasni, N. E.
Arif, and M. Imran, studied On topological indices of certain families of Nano
star dendrimers, [30]. In (2023) A. S. Majeed and N. E. Arif, studied

topological indices of certain neutrosophic graphs. [31]

This thesis is divided into five chapters, chapter one has presented
preliminary definitions of graph theory, polynomials, a topological index of

graph and dendrimer.
Chapter two comprises two sections, including the computation of

various polynomials, with their topological indices by taking it’s derivative
for a selected dendrimer. The first division entails the computation of the first
kind of dendrimer, (D,,, P,), which is also referred to as Porphyrin-dendrimers.
The second section entails the computation of the second kind of dendrimer,

(PETIM), which is referred to as Propyl Ether Imine dendrimers.
Chapter three is divided into two section, including the computation of

various polynomials, with their topological indices by taking it’s derivative
for a selected dendrimer. The first division entails the computation of the first
kind of dendrimer, Zinc porphyrin and ethylene amide amine (PETIM)

dendrimers respectively.
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Chapter four is made up of two section. including the computation of

various polynomials, with their topological indices by taking it’s derivative
for a selected Nano star dendrimer. aminoisophthalate diester monomer
(APD[n]) And Poly(amidoamine) (PD[n]) in every detail.

Chapter five is made up of three section In the first section, the
correlation between some topological indices is given. The second sections

are devoted to figuring out the bottom and upper limits

of the Augmented Zagreb index. The third sections are devoted to determining

the lower and upper bounds of the Edge Irregularity Zagreb index.



Chapter One: Basic Concepts and Preliminaries

Chapter One

Basic Concepts and Preliminaries

1.1 Preliminaries.
Definition 1.1.1: [6] Graph (G): The adjacency relation (X:V xV— E)

establishes the relationship between each edge and the vertex pairs of G.

V4 V3

N L

€4 €

€l

R

Vi Va

Figure 1.1 Graph Example

Definition1.1.2: [37] Order of (G): The order of a graph G, denoted by O(G),

Is the number of its vertices.

Definition1.1.3: [37] Size of (G): The size of graph G, denoted by e(G), is

the number of its edges.

Definition 1.1.4: [35] Graph polynomial: is a way of turning the structure of
a graph into a polynomial (an algebraic expression) that tells us useful
information about the graph. It often includes variables related to the number

of edges, vertices, or how they are connected.

Definition 1.1.5: [37] Isolated vertex: a vertex with degree zero in a graph is
said to be isolated it has no edges connecting it to any other vertex.

Definition 1.1.6: [37] Pendant vertex: a pendant vertex, sometimes known
as a leaf, is a vertex of degree one, which means that it has a single edge

connecting it to precisely one other vertex.

9



Chapter One: Basic Concepts and Preliminaries

Definition 1.1.7: [36] Core vertex: Is a vertex that is neither pendent nor

isolated and also known as an intermediate vertex.

Definition 1.1.8: [37] 1) Graph maximum: A(G) = max{dy): V EV(G)} is
the definition of a graph G's greatest degree, denoted as A(G).

2) Graph minimum: min{d): v € V(G)} is the definition of a graph G's least
degree, represented by 6(G).

3) Keep in mind that 6(G) < d(v) < A(G) for every verteX v in G.

Theorem 1.1.9: [37] In a graph G, the sum of the degrees of the vertices is

equal to twice the number of edges. That is, Y. ey gy vy = 2€

Theorem 1.1.10: [37] For any graph G, 8(G) < % < A(G).

Theorem 1.1.11: [37] The number of vertices of odd degree in any given

graph G is always even.

Definition 1.1.12: [37] Loop: Is an edge in a graph that connects a node to
itself.

Definition 1.1.13: [37] Parallel Edges: edges that are parallel. Multiple or

parallel edges are those that connect the same pair of vertices.

Definition 1.1.14: [37] Simple Graph: A graph G is said to as simple if it
lacks parallel edges and loops.

Figurel.2 Some examples of simple graph.

10
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Definition 1.1.15: [37] Subgraph: A graph H(V,, E;) is considered to be a
subgraph of agraph G(V,E) ifV; € Vand E; € E.

<

Figurel.3: Example of Subgraph

Definition 1.1.16: [37] Spanning Subgraph: A graph H(V,, E;) considered
a spanning subgraph of a graph when G(V,E) if V; = Vand E; € E.

Definition 1.1.17: [37] Complete Graph: Is a simple undirected graph where

each pair of distinct vertices is joined by a distinct edge.

AN

Figurel.4: First few complete graphs.

Definition 1.1.18: [37] Bipartite Graph: A graph G is said to be a bipartite
graph if its vertex set V can be partitioned into two sets, say V; and V., such

that no two vertices in the same partition can be adjacent.

<)

Figure 1.5: Example of Bipartite Graph.

11
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Definition 1.1.19: [37] Complete Bipartite Graph: Is considered complete
If every vertex in one partition is adjacent to every vertex. Complete bipartite
graph with bipartition (x,Y) is denoted by K,y OF Kqp, Where a =
|x|,b = |Y].

RN

Figure 1.6: Example of Complete Bipartite Graphs.

Theorem 1.1.20: [37] The entire graph K,, can be expressed as the union of k
bipartite graphs, If and only if n < 2K,

Definition 1.1.21: [37] Regular Graphs: Graph G is regular when its vertices
have the same degree. Graph G is said to be a k — regular graph if d=

kv s € S(G). Every complete graph is an (n — 1)-regular graph.

(a) A 2-regular graph (b) A 3-regular graph (c) Petersen Graph

Figure 1.7: Examples of Regular Graphs

Definition 1.1.22: [37] Walk: Is any path through a graph that connects
vertex to vertex via edges.

12
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Definition 1.1.23: [37] Trails: A walk that doesn't cross the same edge over

and over again.

Definition 1.1.24: [37] Cycles: Is possible exception of the start vertex being

the same as the end.

Definition 1.1.25: [37] 1) Path: Is a walk that does not involve any vertex
twice. Path that begins and ends at the same vertex is called a cycle. Keep in

mind that a path with n vertices has a length of n-1.

Definition 1.1.26: [37] Geodesic distance: The length (number of edges) of
the shortest path (also called a graph geodesic) between two vertices s and v

in a graph G.

Definition 1.1.27: [37] Eccentricity of the vertex: The longest geodesic
distance between a vertex v and any other vertices is its eccentricity, which is
denoted by the symbol d(s). It can be conceptualized as the separation between

a vertex and the vertex in the graph that is most distant from it.

Definition 1.1.28: [37] Graph's Radius: The smallest eccentricity of any

vertex in a graph G is its radius, denoted by rad(G), rad(G) = g{l/i(ré) d(s)
S

Definition 1.1.29: [37] Diameter of a graph: The maximum eccentricity of
any vertex in a graph G is its diameter, denoted as diam(G), diam(G) =

3% 46

Definition 1.1.30: [37] Cut-Edge: A cut edge (a bridge) is an edge in a graph

whose removal increase the number of connected components in the graph.

13
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Definition 1.1.31: [37] Cut- Vertex: In a connected graph, a cut vertex (also
known as an articulation point) is a vertex whose removal increases the

graph'’s connected components.

V2 V6 v2

V3 V7 V3

(a) Connected graph G (b) Gouv

Figure 1.8: Disconnected graph G — v,

Theorem 1.1.32: [37] A cut-edge of a graph G is one that is not contained in
any of G's cycles.

V3

(a) Connected graph G (b) Gouv

Figure 1.9: Disconnected graph G — v,vs.

14



Chapter One: Basic Concepts and Preliminaries

1.2 Topological Index:

Introduction: A topological index is a quantity calculated from the molecular
graph structure that characterizes the topology (connectivity) of the molecule.
It is a graph-theoretical descriptor used very frequently in chemical graph
theory for correlating molecular structure with chemical, physical, or

biological activity. [36].
Definition 1.2.1: [30] The Augmented Zagreb Index of graph G define as:

3
des) * dyy

AZIG) = 3 svere) (g Tag, 22

Definition 1.2.2: [15] The 1% Reformulated Zagreb Index of graph G define

as.

RMl (G) = Z sveE(G)(d(s) + d(v) - 2)2

Definition 1.2.3: [15] The 2" Reformulated Zagreb Index of graph G define

as.

RM,(G) = D sveE(G)(d(s) + d(v) - 2)(d(s) * d(v))

Definition 1.2.4: [17] The Edge Irregularity Index of graph G define as:

IR (G) = Z sveE(Q) | d(s) - d(v)l

Definition 1.2.5: [19] The Degree Edge Stability Index of graph G define as:

DS (G) = X svere)(d(s) — dw))?.

15
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1.3 Graph Polynomials:

Introduction: Graph polynomial is a polynomial that represents information
pertaining to the structure of a graph. It is built up from numbers or variables
relating to the edges, vertices, or subgraphs of the graph. Graph polynomials
are a means of expressing important properties like how a graph is connected,
or how its components are paired. Graph polynomials are important both in

pure mathematics as well as in applied fields like chemistry and physics. [35].

Definition 1.3.1: [8] The Augmented Zagreb polynomial of graph G define

as:

des) * d(v>_)3
AZP (G,x) =Y SvEE(G) X ds)t d(v)—z

Definition 1.3.2: [14] The 1st Reformulated Zagreb polynomial of graph G

define as:
_2\2
RM,(G,x) =), SVEE(G) x@e*rdwm=2)7,

Definition 1.3.3: [14] The 2nd Reformulated Zagreb polynomial of graph G

define as:
RM, (G, %) = ¥, sve(q) ¥ 4@+ e ~2) @ dw),
Definition 1.3.4: [16] The Edge Irregularity Polynomial of graph G define as:
IR (G,x) = ¥ syer(qy X' 2@~ 2w,

Definition 1.3.5: [19] The Degree Edge Stability Polynomial of graph G

define as:

DS (G; x) = Z SVEE(G) X(d(s)_d("))z.

16
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1.4 Dendrimers:
Dendrimers are artificially synthesized, highly branched, tree-like

macromolecules with a core, uniform interior layers (generations), and
terminal functional groups. Their extremely symmetrical, well-defined
architecture provides them with a unique distinction from the traditional

polymers and allows strict control of molecular size, shape, and functionality.

The concept of dendrimers was first mentioned in the late 1970s and
early 1980s. The first synthesis of dendrimers, i.e., poly (amidoamine)
(PAMAM) dendrimers, was performed by Donald A. Tomalia and colleagues
at Dow Chemical Company in 1985. Around the same time, independently of
one another, Fritz Vogtle in Germany and George Newkome in the USA also
synthesized similar dendritic architectures. Various types of dendrimers have
been prepared over the years to serve different chemical and biomedical
purposes. Some of them are Propyl Ether Imine (PETIM) dendrimers, by
virtue of their solubility and biocompatibility; Zinc Porphyrin and Porphyrin-
based dendrimers, for use in photodynamic therapy and light-harvesting
systems; Ethylene Amide Amine dendrimers, for drug delivery and molecular
encapsulation; and Aminoisophthalate Diester Monomer-based dendrimers,
as building blocks in the assembly of sophisticated dendritic systems. Due to
their new structure and functional diversity, dendrimers have become of
critical importance in fields such as drug delivery, diagnostics,

nanotechnology, catalysis, and materials science. [39-42].
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Chapter Two

Computation of Topological Indices and Polynomials
of Porphyrin (Dn Pn) and Propyl Ether Imine
(PETIM) Dendrimers

2.1 Computation of Topological Indices and Polynomials of
Porphyrin Dendrimer (D, P,,).
Introduction: The topological indices are used to obtain the topological

properties and steric structure of dendrimers or macromolecules. As has been
said earlier throughout this chapter will deal with computing some polynomials
for various different classes of dendrimers like porphyrin dendrimer (D, BP,)
and Propyl Ether Imine dendrimer (PETIM).

Proposition 2.1.1: [41] It considered the first type of dendrimer (D,, P,) then:

1. Order of (D, P,) is 84 x2"~1 51
2. The size of (D,, B,) is 93 x 2"~1 —57. See figure 2.1

D.6P16

Figure 2.1: dendrimers (D,, B,) is also known as porphyrin.

18
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(D,, P,,) and Propyl Ether Imine (PETIM) Dendrimers.

(D,, B,) contain six types of edges based on degree of end vertices of each as

given in table 2.1.

Table 2.1: Graph of the structures (D,, B,)

(ds,dy) (1,3) (1,4) (2,2) (2,3) (3,3) (3.4)
No. of edges 2n 24n | 10n—5 | 48n—6 13n 8n

First of all, we are going to calculate the Augmented Zagreb polynomial for

the molecular (D,, B,)

Theorem 2.1.1: Let n € N, then the Augmented Zagreb polynomial of
(D, B,) isgiven as :

27 64 729
AZP (D,P,,x) = (2n)xs + (24n)xz7 + (58n — 11)x% + (13 n)x'e+ +
1728

(8n)x12s,

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, Es, E,, Esand E4. Which are define as follow. See table 2.1.

| E1(Dy, P,)| Be composed of 2n edges of type s,vstdgy =1, dy) =3,
where sv € E (D, B,).

| E;(Dy, B,)| Be composed of 24 n edges of type s,vstd =1,dy) =4,
where sv € E (D, P,).

| E3(Dy, P,)| Be composed of 10n — 5 edges of type s,vs.td) =2, d ) =
2, where sv € E (D, B,).

| E4(Dy, B,)| Be composed of 48 n — 6 edges of type s, v s.td) =2, d,) =
3, where sv € E (D, B,).
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| Es(Dy, B,)| Be composed of 13 n edges of type s,vs.td ) =3, dy) =3,
where sv € E (D,, B,).

| E(Dy, B,)| Be composed of 8 n edges of type s,v s.tdi) =3, dy) =4,
where sv € E (D, P,).

( ds) *dw) 3

AZP (Dn Pn ’ x) = Z SVEE(G) X ot dw=2
ds) *dw) .3 d(s) * dw) )3
— din+ dn—2 din+ diy—
- Z SVEE{(G) x "©Tm + Z SVEE,(G) x C@TI®T 4

dis) *dw) 3 dis) *dw) .3
din+ dn—2 drn+ den—2
Z SVEE3(G) x "©Tm + Z SVEEL(G) x "©T® +

d(s) *dw) 3 ds) *dw) .3
din+ dn—2 dran+ dn—2
Z SVEE5(G) x “ETTm + Z SVEEG(G) - QN

1%3 1*4- 2*2

=(2n)x G 52 + (24n) x ) + (10n—-5) x G2 -|- (48n —

2%3 3%3 34 (3

6) X Crem 2) + (13n) x Crem 2) + (8n) x Gia?)

729

AZP(D, Py, x) = (Zn)x 8 + (24n)x27 + (58n — 11)x8 + (13n)xe+

1728

+(8n)x 125,

Corollary 2.1.1: [41] let n € N, then the Augmented Zagreb index of
(D, B,) isgiven as :

38031

AZI(D, P,) = n — 88

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, E3, E,, Esand E4. Which are define in the theorem 2.1.1. By using
definition of Augmented Zagreb topological index we will apply on Porphyrin

dendrimer (D,, B,). By taken its derivative we will get the topological index.
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ds) *d(v
AZI (Dn Pn) = Z stE(G)(d(S()_)l_—d(‘f))_z)g'

27 64
%[AZP(PW )]yer = (20) x5 + (24n) x27 + (58n — 11)x® +

729 1728

(13n)xe+ + (8n)x 125

a _ 27 1536 9477 13824
2 LAZP(Dn Py )]im1 =+ S =n+—mn+——o-n+ 58 n — 88
38031
AZI(D, ) =221y — g8,

Theorem 2.1.2: Let n € N, then the 1 Reformulated Zagreb Polynomial of
(D,, B,) is define as :

RM,;(D,, P, x) = (60n — 11)x* + (26n)x° + (13n)x® + (8n)x?°

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, Es, E,, Esand E,. Which are defined as follow. See table 2.1:

| E1(Dy, Py)| consist 2n edges of type s, v s.td) = 1, d,y = 3, where
sv € E (D, P,).

| E;(Dy, B)| consist 24n edges of type s,v stdi) =1, dyy =4, where
sv € E (D, P)).
| E3(Dy, Py)| consist 10n — 5 edges of type s, v s.td) = 2, d () = 2, where
sv € E (D, B,).
| E4(Dy, Py)| consist 48n — 6 edges of type s, v s.td) = 2, d () = 3, where
sv € E (D, PB,).

| Es(Dy, B,)| consist 13n edges of type s,v st ds) =3, dg,) = 3, where
sv €E (D, P,)).
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| Ec(Dy, B,)| consist 8n edges of type s, v s.tdy =3, d () = 4, where
sv €E (D, PB).
—2)2
RM, (Dn P, x) = Z SVEE(G) x(d(s)+d(”) 2)
= Love E1(G) x(o+de 2" 4 Y. sve E>(G) xotdm=2" 4

3 sve 53 (6) X OO L T e gy G0 EmD 4

—2)2 —_7\2
Y sve Es(G) PACORCORDEE'S) SVE E¢(G) xd*dm=2)
= (2n) x1*372° 4 (24n) xA+42° 4 (10n — 5)x@*+272)° 4 (48n —
6) x(1+3—2)2 + (2n) x(2+3—2)2 + (13n) x(3+3—2)2 + (8n) x(3+4—2)2
RM,(D, P,,x) =(60n—11)x*+ (26n)x° + (13n)x'° + (8n)x?°.
Corollary 2.1.2:Let n € N, then the 1% Reformulated Zagreb index of
(D,, B,) is given as :

RM, (D, B,) = 1104n — 74.

Proof: By the same way of corollary 2.1.1, to compute the result of 1%
Reformulated Zagreb Polynomial, which is denoted by RM, (D,, B,, x), of the
dendrimer (D,, B,), we differentiate it with respect to x, evaluating at x = 1,
This yields:

% [ RM{(D,, Py, x)] |x=1= (60n — 11)x* + (26n)x° + (13n)x1® +

(8n)x2>.

25 [ RMy (D Po, X)1=1= 8n + 216n + 400 — 20 + 432n — 54 + 2081 +

200n.

22



Chapter Two: Computation of Topological Indices and Polynomials of Porphyrin
(D,, P,,) and Propyl Ether Imine (PETIM) Dendrimers.

Thus, the 1% Reformulated Zagreb Index of the porphyrin dendrimer is
(D,, B,) verified as:

RM,(D,, P,) = 1104n — 74.

Theorem 2.1.3:Let n € N, then the 2" Reformulated Zagreb Polynomial of
(D, B,) is define as :
RM,(D, P,) = (2n)x® + (10n — 5)x® + (24n)x1? + (48n — 6)x18 +
(13n)x3° + (8n)x?8°

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, E3, E,, Esand E4. Which are define as follow. See table (2.1).

| E1(Dy, P,)| include 2n edges of type s,v s.t d;) =1, dg,) =3, where
sv € E (D, PB,).

| E2(Dy, By)| include 24 n edges of type s,v s.td) =1, dp,) =4, where
sv € E(D,P,).

| E3(Dy, Py)|include 10n — 5 edges of type s, v s.tdsy = 2, dp,) = 2, where
sv € E (D, PB,).

| E«(Dy, B) | include 48 n — 6 edges of type s,v st diy =2, dy) =3,
where sv € E (D, B,)

| Es(Dy, Py)| include 13 n edges of type s,v st ds) =3, d,y = 3, where
sv €E (D, P,)).

| E¢(Dy, P,)| include 8 n edges of type s,v s.t dy =3, d,y =4, Where

sv € E (D, PB).

RM,(Dy, By, %) = X syer(q) X 9+ 8@ 2) Ao dw)
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= X sveE, (6) x (@ +tdw)=2)d*dw) + Y SVEE, (6) x (Ao +dwm—2) (A dw) 4
Y sveEs(6) x(do+dm =)@ de) 4y EL(6) x (A tdw—2) (A *dw) 4+
Y sveEs(G) x(d©+dw)=2) ([ dw) 4 Y. sves.(6) (A +dw)=2)([d(5)*dw))
= (2n) x(1+3=2)(1%3) 4 (24n) x(A+4=DA) 4 (10n — 5)x@+2-D(@2) 4
(487’1 _ 6)x(2+3—2)(2*3) + (137’1) x(3+3—2)(3*3) + (87’1) x(3+4——2)(3*4—)
RM,(D,, P,,x) = (2n)x®+ (10n —5)x8 + (24n)x? + (48n — 6)x18 +
(13n)x3° + (8n)x8°,
Corollary 2.1.3:Let n € N, then the 2" Reformulated Zagreb index of
(D,, B,) is given as :

RM,(D,, P,) = 2288n — 148.

Proof: By way of corollary 2.1.1, confirm the result of 2" Reformulated
Zagreb Polynomial, which is denoted by RM, (D,, P,, x) , of the dendrimer

(D,, B,), we differentiate it with respect to x, evaluating at x = 1, This yields:

% [ RMy(Dy, By, %)) |x=1= (2n)x® + (10n — 5)x® + (24n)x'? + (48n —

6)x18 + (13n)x3% + (8n)x8°.

% [ RMy(Dp Py, %)|x=1= 120 + 288 n + 80n — 40 + 864n — 108

+468n + 576n.

Thus, the 2" Reformulated Zagreb Index of the porphyrin dendrimer is
(D, B,) verified as:

RM,(D, P,) = 2352n — 148.
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Theorem2.1.4: Letn € N, then the Edge Irregularity Polynomial of (D,, B,) is

define as :
IR (D, P, x) = (24n)x3 + (2n)x? + (56n — 6)x + 23n — 5.

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, E3, E4, Esand E4. Which are define as it’s shown in the table (2.1).

| E1(Dy, By)| consists 2n edges of type s,v st d) =1, d,) = 3, where
sv € E (D, PB,).

| E;(Dy, By)| consists 24 n edges of type s,v stdy =1, dg,) = 4, where
sv € E (D, P,).

| E3(Dy, Py) | consists 10n — 5 edges of type s,v st d) =2, dpy =2,

where sv € E (D, P,).

| E4(Dy, P,)| consists 48 n — 6 edges of type s,v std) =2, dy) =3,
where sv € E (D, B,).

| Es(Dy, B)| consists 13 n edges of type s,v s.td¢y) =3, d,) = 3, where
sv € E (D, P,).

| Es(Dy, P,)| consists 8 n edges of type s,v s.td) =3, d,,) = 4, where
sv € E (D, P,).

IR (Dn Pnt x) = Z SVEE(G) xl ROREC]

= dis)— d dis)—d ds)— d
=L SVEE1(G) xldo™ ol + % SVEE,(G) xldo™dwl + ) SVEE3(G) x! 4o~ dwl 4

dio—d dron—d deo— d
Y sver, ) X' 20Tl 43 ep 6y x12OTIWN + T e 6y x40 )
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= (2n)x =3 + (24n) x4 + (100 — 5)x27 2 + (48n — 6) x*7 31 +
(13n) x3731 + (8n)x 1~ 4l.

IR (D, P, x) = (24n)x3 + (2n)x? + (56n — 6)x + 23n — 5.

Corollary 2.1.4:Let n € N, then the Edge Irregularity index of (D,, B,) is

given as :
IR (D,, B,) =132n — 6.

Proof: To demonstrate and evaluate the result of Edge Irregularity
Polynomial, which is denoted by IR (D,, P,, x) , of the dendrimer (D,, B,), we

differentiate it with respect to x, evaluating at x = 1, This yields:

% [IR (D,, Py, X)] |=1= (24n)x3 + 2n)x% + (56 n — 6)x + 23n— 5

%“R (D, Py, x)|x=1=4n+ 72n + 48n — 6 + 8n.

Thus, the Edge Irregularity Index of the porphyrin dendrimer is
(D, B,) verified as:

IR (D, P,) =132n — 6.

Theorem2.1.5: Let n € N, then the Degree Edge Stability Polynomial of

(D, B,) isgiven as :
DS (D, P,,x) = (24n)x° + (56n — 6)x* + (8n)x + 23n — 5

Proof: The edge set of Porphyrin dendrimer (D,, B,) is divided in to six sets
E,, E,, E5, E,, Esand E4. Which are define in the table (2.1).

| E1(Dy, B,)| contain 2n edges of type s, v s.tdy = 1, dg,;) = 3, where

sv € E (D, P).
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| E2(Dy, B)| contain 24n edges of type s,v stdgy =1, d,y =4, where
sv € E (D, PB).

| E5(Dy, B)| contain 10n — 5 edges of type s, v s.tdsy = 2, d () = 2, where
sv € E(D,P,).

| E4(Dn Py)| contain 48n — 6 edges of type s,v st dy) =2, dy) =3,
where sv € E (D,, B,).

| Es(Dy, B)| contain 13n edges of type s,v st dy =3, d(,y =3, where
sv € E (D, PB,).

| E¢(Dy, Py)| contain 8n edges of type s, v s.td¢y = 3, d,y = 4, where

sv € E (D, Py).

DS (D P, %) = ¥ spep(q) x40 40"

= X sveEs(6) x@edo)" 4+ 7 SVEE,(G) PACORLOVIES) SVEE3(G) xo=dw)” 4
% svery(@ X O™ + B en (6) X OO + 3 e gy 40740

= (2n) x79" 4 (24n) 079" + (10n — 5)x@~D” + (48n — 6)x(1~D" +
(13n) xB-3" 4 (8n) xB~»”

DS (D, P,,x) = (24n)x° + (56n — 6)x* + (8n)x + 23n — 5.
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Corollary 2.1.5:Let n € N, then the Degree Edge Stability index of (D,, B,) is

given as :
DS (D, B,) =496n — 6.

Proof: To evaluate the result of Degree Edge Stability Polynomial by the
same way of corollary 2.1.1, and denoted by DS (D,, B, x) , of the dendrimer

(D,, B,), we differentiate it with respect to x, evaluating at x = 1, This yields:

% [ DS (Dn Pnrx)] ‘x:1: (247’1)X9 + (5671 — 6)x4 + (8n)x +23n—-5

% [ DS (D,, Py, %)|,=1= 8n + 432n + 40n + 48n — 6 + 8n.

Thus, the Degree Edge Stability Index of the porphyrin dendrimer is
(D,, B,) verified as:

DS (D, P,) = 496n — 6.
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2.2 Computation of Topological Indices and Polynomials of

Propyl Ether Imine Dendrimer (PETIM).
Proposition 2.2.2: [41] It considered the second type of dendrimer (PETIM)

then:

1. Order of (PETIM) is 24 « 2™ — 23
2. Size of (PETIM) is 24 = 2™ — 24. See figure 2.2

Figure 2.2: dendrimers (PETIM)is also known as Propyl Ether Imine.

(PETIM) contain three types of edges based on degree of end vertices of
each as given in table 2.2.

Table 2.2: Graph of the structure (PETIM).

(2,3)

(ds, dy)

(1,2)

(2,2)

No. of edges

2n+1

2n+4__ 18

48n — 6
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Theorem 2.2.1: Let n € N, then the Augmented Zagreb Polynomial of
(PETIM) is given as:

AZP (PETIM, x) = 24 = x3(2" — 1)

Proof: The edge set of Propyl Ether Imine dendrimer (PETIM) is divided in

to three sets E;, E, and E5. Which are define as follow. See table 2.2.

| E;(PETIM)| includes 2™** edges of type s,vs.td) =1, dy = 2 where
v € E (PETIM)

| E;(PETIM)| includes 2™** — 18 edges of type s,v std =2, dgy = 2
where sv € E (PETIM)

| Es(PETIM)| includes 6 = 2™ — 6 edges of type s,v std) =2, dy) =3
where sv € E (PETIM).

d(s) * d(w)

3
AZP (PETIM,x) = 3 spene) X "©" 02

ds) *dw) .3 ds) *dw) |3
— din+ dn—2 dr+ don—2
=Y sveE, )X OO+ ¥ er )X (O +

d(s) * d(v) )3
din+ don—2
Z SVEE3(G) x "7 :

— (2n+1)x(%)3+ (2™ — 18) G +(6 % 2" — 6)x(%)3

— (2n+1)x8+ (2n+4 — 18 ) x8 +(6 x 2N — 6)x8

AZP (PETIM,x) = 24 xx8(2" —1).
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Corollary 2.2.1:Let n € N, then the Augmented Zagreb index of (PETIM) is

given as :
AZ| (PETIM)=2"*> + 6« 2™ — 192.

Proof: By demonstrating the result of Augmented Zagreb Polynomial, which
Is denoted by AZI (PETIM, x), of the dendrimer (PETIM), we differentiate

it with respect to x, evaluating at x = 1, This yields:
%[AZP (PETIM, x)] |,o1= 24 * x8(2" — 1)

Thus, the Augmented Zagreb Index of the Propyl Ether Imine dendrimer is
(PETIM) verified as:

AZ| (PETIM)=2™*> + 6x 2™ — 192.

Theorem 2.2.2: Let n € N, then the 1 Reformulated Zagreb Polynomial of
(PETIM) is given as :

RM,(PETIM)=(2* 2Mx + (2" —-9)x3+3xx8(2" - 1)

Proof: The edge set of Propyl Ether Imine dendrimer (PETIM) is divided in

to three sets E;, E, and E5. Which are define as follow.

| E;(PETIM)| consists 2"** edges of type s,vs.td) =1, d,y = 2 where
sv € E (PETIM).

| E,(PETIM)| consists 2"** — 18 edges of type s,v s.td) = 2, dg,) = 2,
where sv € E (PETIM)

| E3(PETIM)| consists 6 x 2™ — 6 edges of type s,v std) =2, dy) =3,
where sv € E (PETIM).
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RM,(PETIM, x) = ¥, syep(q) X 4o+ d@=2’

)2 2
= X swer, (6) X OO+ ¥ o ep ) x0T
+T sven, (g X0
— (21’l+1)x(1+2—2)2+ (2n+4 — 18 ) x(2+2—2)2 +(6 " Zn _ 6)x(2+3_2)2

= x(2* 2™ + x3(2"3 - 9) + 3 xx8(2" — 1).

Corollary 2.2.2:Let n € N, then the 1% Reformulated Zagreb index of
(PETIM) is given as :

RM, (PETIM) = 120% 2" — 126.

Proof: Proving and calculating the result of 1% Reformulated Zagreb
Polynomial, which is denoted by RM,(PETIM,x) , of the dendrimer
(PETIM), we differentiate it with respect to x, evaluating at x = 1, This
yields:

[ RMy(PETIM, )] [yo1= (2 2%x + (2% — 9)x?

+(3 % 2™ — 3)x5.

Thus, the 1% Reformulated Zagreb Index of the Propyl Ether Imine dendrimer
IS (PETIM) verified as:

RM, (PETIM) = 120% 2" — 126.

Theorem 2.2.3: Let n € N, then the 2" Reformulated Zagreb polynomial of
(PETIM) is givenas :

RM,(PETIM, x) = 2x?% * 2™ + x8(2"*3 —9) + 3 x x18(2" — 1)
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Proof: The edge set of Propyl Ether Imine dendrimer (PETIM) is divided in

to three sets E;, E, and E5. Which are define as follow.

| E;(PETIM)| is composed of 2*! edges of type s,vs.td) =1, Ay =2
\where sv € E (PETIM)

| E;(PETIM)| is composed of 2"** — 18 edges of type s,v st d(y =2,
dwy =2 ,where sv € E (PETIM).

| E3(PETIM)| is composed of 6 * 2™ — 6 edges of type s,v stdy) =2,
dwy =3, where sv € E (PETIM).

RM,(PETIM, x) = ¥, spep(g) x @t ~2) e dw)

= sveE,(6) x (@ +dwm=2)(de*dw) +3 SVEES(6) x (A +dw)=2)(ds)*dw)

+ Y sver, () X @D dw),

— (2n+1)x(1+2—2)(1*2)+ (2n+4 _ 18) x(2+2—2)(2*2) + (6 %

2n6) x(2+3—2)(2*3)
RM,(PETIM,x) = (2 * 2™)x + x8(2"*3 — 9) 4+ x18(3 + 2" — 3),

Corollary 2.2.3:Let n € N, then the 2" Reformulated Zagreb index of
(PETIM) is givenas :

RM,(PETIM) = 240% 2" — 252,

Proof: To examine critically the result of 2" Reformulated Zagreb
polynomial, which is denoted by RM, (PETIM, x), of the dendrimer

(PETIM), we differentiate it with respect to x, evaluating at x = 1, This
yields:
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L[ RM,(PETIM, )] | 5= =(2 % 277 + x%(2"3 = 9)
+x18(3 % 2" - 3).

Thus, the 2@  Reformulated Zagreb Index of the Propyl Ether Imine
dendrimer is (PETIM) verified as:

RM,(PETIM) = 240% 2™ — 252,

Theorem2.2.4: Let n € N, then the Edge Irregularity polynomial of
(PETIM) is given as :

IR (PETIM,x) =8+ 2" xx 4+ 16 * 2" — 6 * x — 18.

Proof: The edge set of Propyl Ether Imine dendrimer (PETIM) is divided in

to three sets E;, E, and E5. Which are define as follow.

| E;(PETIM)| involve 2"*! edges of type s,vstdy ) =1, dwy = 2, where
sv € E (PETIM).

| E;(PETIM)| involve 2™** — 18 edges of type s,v std = 2, dp,y = 2,
where sv € E (PETIM).

| Es(PETIM)| involve 6 = 2™ — 6 edges of type s,vs.td) =2, dg,) = 3,
where sv € E (PETIM).

IR (PETIM, x) =), SVEE(G) x| 4 —dw)
=X SVEE;(G) x! d(s)_d(v)|+2 SVEE,(G) xldo=dml + D SVEES(G) PR ORCION
= (M) x 1724 (27 — 18) x12721 +(6 + 2™ — 6) x1273

IR (PETIM, x) = (8 * 2" — 6)x + (2"** — 18).
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Corollary 2.2.4:Let n € N, then the Edge Irregularity index of (PETIM) is
given as :
IR (PETIM) =8 % 2™ — 6.

Proof: To prove critically the result of Edge Irregularity polynomial, which
Is denoted by IR(PETIM, x), of the dendrimer (PETIM), we differentiate it

with respect to x, evaluating at x = 1, This yields:

%[IR(PETIM,X)] |x=1:(8*2n_6)x+(2n+4_18).
4 _ .
d(x)[IR(PETIMJX)] |x=1=8* 2 6

Thus, the Edge Irregularity Index of the Propyl Ether Imine dendrimer is
(PETIM) verified as:

IR (PETIM) =8 2" —6.

Theorem 2.2.5: Let n € N, then the Degree Edge Stability Polynomial of
(PETIM) is given as :

DS (PETIM,x) = (8% 2™ — 6)x + (2% — 18)

Proof: The edge set of Propyl Ether Imine dendrimer (PETIM) is divided in

to three sets E;, E, and E5. Which are define as follow.

| E;(PETIM)| it has 2™*! edges of type s,v s.td) =1, dg,) = 2, where
sv € E (PETIM).

| E,(PETIM)| it has 2"** — 18 edges of type s,v std =2, dgy = 2,
where sv € E (PETIM).
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| Es(PETIM)| it has 6 = 2™ — 6 edges of type s,v s.tdy =2, dy =3,
where sv € E (PETIM).

DS (PETIM, x) = Y. spep g X 4@~ %@)*

= X sveE, (6) ACORLCUED) SVEE,(G) ACORL D) SVEE3(G) x (e ~de)”
— (2n+1)x(1—2)2+ (2n+4 — 18) x(2-2)° +(6 * 2" — 6) x(2-3)?%

DS (PETIM,x) = (8 2™ — 6)x + (2"** — 18).

Corollary 2.25:Let n € N, then the Degree Edge Stability index of
(PETIM) is given as :

DS (PETIM) =8 % 2" —6.

Proof. To demonstrate and evaluate the result of Degree Edge Stability
Polynomial, which is denoted by DS(PETIM, x), of the dendrimer (PETIM),

we differentiate it with respect to x, evaluating at x = 1, This yields:

25 [ DS(PETIM, )] |=1=(8 * 2" — 6)x + (2"** — 18).

d

25 [ DS(PETIM, x)] |x=1=8 % 2" —6

Thus, the Degree Edge Stability Index of the Propyl Ether Imine dendrimer is
(PETIM) verified as:

DS (PETIM) =8 % 2" — 6
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Chapter Three

Computation of Topological Indices and Polynomials
of Zinc Porphyrin (DpZ,,) and Poly (Ethylene Amide
Amine) (PETAA) Dendrimers.

3.1 Computation of Topological Indices and Polynomials of
Zinc Porphyrin Dendrimer (DPZ,,).
Introduction: The topological indices are used to obtain the topological

properties and steric structure of dendrimers or macromolecules. As has been
said earlier throughout this chapter will deal with computing some
polynomials for various different classes of dendrimers like p Zinc Porphyrin
(DPZ,). and Poly(Ethylene Amide Amine) dendrimers (PETAA).

Proposition 3.1.1: [41] It considered the first type of dendrimer (DPZ,,) then:

1. Order of (DPZ,) is96 xn — 10

2. Size of (DPZ,)is 105 xn — 11. See figure.
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Figure 3.1: dendrimers (DPZ,,)is also known as Zinc Porphyrin.
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(DPZ,)) strictures contain three types of edges based on degree of end

vertices of each as given in table 3.1.

Table 3.1: Graph of the stretcher (DPZ,,).

(ds, dy) (2,2) (2,3) (3,3) (3.4)
No.ofedges | 162" —4 | 40%2"—16 | 8x2"—16 4

Theorem 3.1.1: Let n € N, then the Augmented Zagreb Polynomial of
(DPZ,)is given as :

729 1728 726

AZP(DPZ,,x)=8* 2" *x6s + 56 x 2" xx8 + 4 x x125 — 16 * x'64
—20 x8

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,))is divided in to four

sets E;, E,, Esand E, . Which are done in the entirety of chapter two.

| E1(DPZ,,)| contain 16 2™ — 4 edges of type s,vstdy ) =2, dy) =2,
where sv € E (DPZ,).

| E;(DPZy,)| contain 40 = 2™ — 16 edges of type s,vs.td) =2, d,) =3,
where sv € E (DPZ,).

| E3(DPZ,,)| contain 8 * 2™ — 16 edges of type s,v st d) =3, dp) =3,
where sv € E (DPZ,).

| E4(DPZ,)| contain 4 edges of type s, v s.td() = 3, dg,) = 4, where

sv € E (DPZ,).

d(s) * d(v)

)3
AZP(DPZn; x) = Z SVEE(G) x OO
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ds) *dw) |3 d(s) * d(v) )2
—_ din+ don—2 drn+ din—2
- Z SVEE1(G) x “ET® + Z SVEE,(G) x “©Tm +

dis) *dw) .3 d(s) * d(w) )3
deoy+ d oy —2 deoy+ dipyy—2
Z SVEE3(G) x 7T +Z SVEEL(G) X T

242 253 |3

= (16 % 2" — 4) xGr22) + (40 * 2" — 16) xG3-2

33 3x4

n _ Gy’ G’
+(8*2"—-16)x + (4) x :

729 1728

AZP(DPZ,,x)=8 % 2™« x6¢ + 56 % 2™« x8 + 4 % x125

726

—16 * x'64 — 20 x8.

Corollary 3.1.1: Let n € N, then the Augmented Zagreb index of (DPZ,,) is

given as :
AZI (DPZ,)=64x 2™ — 231.95.

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,)is divided in to four
sets E;, E,, E5 and E,. Which are define in the theorem 3.1.1. By using
definition of Augmented Zagreb topological index we will apply on Porphyrin

dendrimer(DPZ,,). By taken its derivative we will get the topological index.

des) * dey
AZl (DPZ,)=7>. stE(G)(d(S()j-—d(‘f)iz)s'

d 729 1728

%[AZP(DPZ”’X)]xﬂ = 8x2Mxx6t +56% 2" % x8 + 4 % x125

726

—16 * x64 — 20 x8.

% [ AZP(DPZ,,, x)]x=1 = 64* 2" — 231.95.
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AZP(DPZ,, x) = 64% 2" — 231.95.

Theorem 3.1.2: let n € N, then the 1%t Reformulated Zagreb Polynomial of
(DPZ,) isgiven as :

RM,(DPZ,) = (16 * 2™ — 4) x8 + (40 = 2" — 16)x?’
+(8 % 2™ — 16)x%* + 4 * x125,

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,))is divided in to four
sets E;, E,, Esand E, . Which are done in the entirety of chapter three.

| E1(DPZ,,)| includes16 = 2™ — 4 edges of type s,vs.td) =2, dg,) = 2,
where sv € E (DPZ,).

| E;(DPZ;,)| includes40 = 2™ — 16 edges of type s,vs.tdy =2, dg,y = 3,
where sv € E (DPZ,).

| E3(DPZy,)| includes8 * 2™ — 16 edges of type s,v st d) =3, d,) = 3,
where sv € E (DPZ,,).

| E4(DPZy,)| includes4 edges of type s,v s.t d) =3, dy) =4, where
sv € E (DPZ,).

RM;(DPZy,) = X spep(g) x (@@ +d@ 2"

_ dioy+d,n—2)2 dioy+d ) —2)>
_ZSUEEl(G)x( )+ dw)~2) +ZSUEE2(G)X( ©+dw)=2)

d(y+d ) —2)> dsy+d ) —2)2
+steE3(G)x( T )+steE4(G)x( +dw=2)

= (16%2" —4)x@+2-2° 4+ (402" —16) x@*3°2° + (8«2 —
16) x(3+3—2)3 + (4) x(3+4—2)3.
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RM;(DPZ,,x)= (16 * 2™ — 4) x8 4+ (40 x 2™ — 16)x?7 + (8 * 2" —

16)x%* + 4 * x125,

Corollary 3.1.2: Let n € N, then the 1 Reformulated Zagreb index of
(DPZ,) isgiven as :

RM, (DPZ,)=552 % 2" — 411.75.

Proof: By the same way of corollary 3.1.1, to confirm and compute the result
of 1 Reformulated Zagreb Polynomial, which is denoted by RM, (DPZ,,, x),
of the dendrimer (DPZ,,), we differentiate it with respect to x, evaluating at
x = 1, This yields:

% [ RM;(DPZ,,, x)] |x=1= (16 % 2™ —4) x® + (40 * 2™ — 16)x*7 + (8 *
2™ — 16)x%% + 4 * x125,

Thus, the 1% Reformulated Zagreb Index of the Zinc Porphyrin dendrimer is
(DPZ,,) verified as:

RM, (DPZ,)=552 % 2" — 411.75.

Theorem 3.1.3: let n € N, then the 2" Reformulated Zagreb Polynomial of
(DPZ,) isgiven as :

RM,(DPZ,) = (16 = 2™ — 4)x® + (40 * 2" — 16)x18
+(8 % 2™ — 16)x36 + 4x°°,

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,))is divided in to four

sets E,, E,, Esand E, . Which are done in the entirety of chapter two.
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| E;(DPZ,,)| it has 16 = 2™ — 4 edges of type s,v stdy =2, dpy = 2,
where sv € E (DPZ,).

| E;(DPZ,,)| it has 40 « 2™ — 16 edges of type s,v s.tdy =2, dpy =3,
where sv € E (DPZ,,).

| E3(DPZ,,)| it has 8« 2™ — 16 edges of type s,v s.t d;) =3, dg,y = 3,
where sv € E (DPZ,).

| E4(DPZy,)| it has 4 edges of type s,vs.td) =3, dyy =4, where

sv € E (DPZ,).

RM,(DPZ,, x) = ¥, speg ) X 1@ 4w~ dx dw)

=Y sver, (@) X 4O +3 p 6y x0TI )

x @ tdw)=2)[d)*dw) 4 Y sver. () x @ tdw)=2)(d(5)*dw))

Z SVEE3(G)

— (16 % 2N 4) x(2+2—2)(2*2)+ (40 * 2N 16) x(2+3—2)(2*3) + (8 x 2N
16) x(3+3—2)(3*3) + (4) x(3+4—2)(3*4)

RM,(DPZ,,x) = (16 * 2" — 4)x® + (40 * 2" — 16)x8 + (8 * 2" —
16)x36 + 4x°9).

Corollary 3.1.3: Let n € N, then the 2" Reformulated Zagreb index of
(DPZ,) isgiven as :

RM, (DPZ,)= 1136 2" — 656.

Proof: By using a similar path used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:
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%x) [ RM,(DPZ,, )] |o1= (16 % 2™ — 4)x® + (40 % 2" — 16)x18
+(8 x 2™ — 16)x36 + 4x59).

Thus, the 2" Reformulated Zagreb Index of the Zinc Porphyrin dendrimer is
(DPZ,)) verified as:

RM, (DPZ,)= 1136 » 2" — 656,

Theorem 3.1.4: Let n € N, then the Edge Irregularity Polynomial of
(DPZ,) isgiven as :

IR (DPZ,,) = (24 = 2™ — 20) + (40 % 2" — 12)x.

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,))is divided in to four
sets E,, E,, Esand E, . Which are done in the entirety of chapter three.

| E1(DPZ,)| consists 16 * 2™ — 4 edges of type s,vstd) =2, dy) =2,
where sv € E (DPZ,).

| E;(DPZy,)| consists 40 = 2™ — 16 edges of type s,vs.tdy ) =2, d) =3,
where sv € E (DPZ,,).

| E3(DPZ,,)| consists 8 « 2™ — 16 edges of type s,vstd) =3, dy) =3,
where sv € E (DPZ,).

| E4(DPZ,,)| consists 4 edges of type s,v st d) =3, d,) =4, where
sv € E (DPZ,).

IR (DPZ,) = Y spep(e) X 1@ 4o,
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= ds)—d ds)—d deo—d
= Yovery@ X OO + ¥ pep, ) x! 107N+ ¥ pepy @ ¥ M7 +

ds)—d
Y svek, () X 10740

= (16 % 2™ — 4)x!2721+ (40 %« 2" — 16 )x! 2731 + (8 + 2™ — 16) x/ 373

+(4)x! 374
IR (DPZ,,,x) = (24 * 2™ — 20) + (40 * 2™ — 12)x.
Corollary 3.1.4: Let n € N, then the Edge Irregularity index of (DPZ,,) is
given as :

IR (DPZ,)=40 2" —12.

Proof: By using a similar path used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:

L [IR(DPZ,, )] |xoy= (24 + 2" = 20) + (40 » 2" — 12)x.

Thus, the Edge Irregularity Index of the Zinc Porphyrin dendrimer is
(DPZ,,) verified as:

IR (DPZ,)=40 * 2" —12.

Theorem 3.1.5: Let n € N, then the Degree — Edge Stability Polynomial of
(DPZ,) isgiven as :

DS (DPZ,) = (24 + 2™ —20) + (40 * 2™ —12)x

Proof: The edge set of Zinc Porphyrin dendrimer (DPZ,,))is divided in to four

sets E,, E,, Esand E, . Which are done in the entirety of chapter two.

44



Chapter Three: Computation of Topological Indices and Polynomials
of Zinc Porphyrin ( DP Z,)) and Poly (Ethylene Amide Amine)
(PETAA) Dendrimers.

| E;(DPZ,)| is made up of 16 = 2™ — 4 edges of type s,v std =2,
d«y = 2, where sv € E (DPZ,)

| E;(DPZ,)| is made up of 40 = 2™ — 16 edges of type s,v st d) =2,
dw) = 3, where sv € E (DPZ,,).

| E3(DPZ,)| is made up of 8 « 2" — 16 edges of type s,v st dy =3,
dwy = 3, where sv € E (DPZ,).

| E4(DPZy)| is made up of 4 edges of type s, v s.tdy =3, d(,y = 4, Where
sv € E (DPZ,).

DS (DPZp)| = ¥ sper gy ¥ @)’

_ 2 _ 2 _ 2
=X SVEE;1(G) xA@=d@)" + ZSVGEz(G) x@o=de)” + steE3(G) x4
+Z SVEEL(G) X(d(s)_d(”))z.
= (162" —14) x2-2* 4 (40 2™ — 16) x@-3% 4 (8% 2™ —
16) xG=3* 4 (4) xG—9*

DS (DPZ,,x) = (24 x 2™ —20) + (40 * 2™ — 12)x.

Corollary 3.1.5: Let n € N, then the Degree Edge Stability index of (DPZ,,) is

given as :
DS(DPZ,) =40 x 2™ — 12,

Proof: By using a similar approach used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:
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[ DS(DPZy )] |poy= (24 + 27 —20) + (40 # 2" — 12)x.

Thus, the Degree Edge Stability Index of the Zinc Porphyrin dendrimer is
(DPZ,,) verified as:

DS(DPZ,) =40 * 2™ — 12.
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3.2: Computation of Topological Indices and Polynomials of
Poly (Ethylene Amide Amine) (PETAA) Dendrimer.
Proposition 3.2.1: [41] It considered the second type of dendrimer (PETAA)

then:
1. Order of (PETAA) is 44 * 2™ — 18

2. Size of (PETAA) is 44 = 2™ — 19. See figure 3.2

Figure 3.2: dendrimers (PETAA)is also known as Poly(Ethylene Amide

Amine).

(PETAA) stricture have four types of edges based on degree of end vertices
of each as given in table 3.2.
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Table 3.2: Graph of the stricture (PETAA).

(ds, dy) (1,2) (1,3) (2,2) (2.3)
No.ofedges | 4x27 | 4%2"—2 [16%2"—8 | 20%2"—9

Theorem 3.2.1: Let n € N, then the Augmented Zagreb Polynomial of
(PETAA)is given as :

27

AZP (PETAA, x)= (40 x 2" — 17)x8 + (4 x 2" — 2)xs

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is

divided in to four sets E;, E,, Esand E, . Which are define as follow

| E;(PETAA) | consists 4 = 2™ edges of type s,v st d =1, dp) =2,
where sv € E (PETAA).

| E;(PETAA)| consists 4 + 2™ — 2 edges of type s,vs.td) =1, dg,) = 3,
where sv € E (PETAA).

| E;(PETAA)|consists 16 = 2™ — 8 edges of type s,vstdy =2, dy) = 2,
where sv € E (PETAA).

| E4(PETAA)| consists20 = 2™ — 9 edges of type s, vs.tdy =2, d ) =3,
where sv € E (PETAA).

d(s) * d(v)

)3
AZP (PETAA, x)= Y spep) X “© @™
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d(s) * dw) )3 d(s) * d(v) )2
—_ drnt+ di,n—2 drnt+ din—2
- Z SVEE1(G) x “E©TT® + 2 SVEE,(G) x “E©Tm +

dis) *dw) .3 d(s) * d(w) )3
deoy+ d oy —2 deoy+ dipyy—2
Z SVEE3(G) x 7T +Z SVEEL(G) X T

1%2 1+x3 (3 2%2 (3

= (4#2MxT2? + (42" —2) x5 + (16%2" —8) xT2? +

2x3

(20 * 2™ — 9) xGr32)"

27
AZP (PETAA, x)= (40 = 2" — 17)x8 + (4 * 2™ — 2)xs.

Corollary 3.2.1: Let n € N, then the Augmented Zagreb index of (PETAA) is

given as :

AZ| (PETAA)= 333.5% 2" — 142.7

Proof: By using a similar approach used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:

d

27
205 [ AZP (PETAA, )] [1=1= (40 2™ = 17)x° + (4 2" = 2)x's.

Thus, the Augmented Zagreb Index of the Poly(Ethylene Amide Amine)
dendrimer is (PETAA) verified as:

AZ| (PETAA) = 333.5% 2" — 142.7
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Theorem 3.2.2: let n € N, then the 1% Reformulated Zagreb Polynomial of
(PETAA) is given as :

RM,(PETAA) = (4« 2™)x + (20 * 2™ — 10)x8 + (20 * 2™ — 9)x?7

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is

divided in to four sets E;, E,, Esand E, . Which are define as follow.

| E1(PETAA)| is made up of 4 « 2™ edges of type s, v s.tdy =1, d) = 2,
where sv € E (PETAA).

| E,(PETAA)| is made up of 4« 2™ — 2 edges of type s,v std =1,
dwy = 3, where sv € E (PETAA).

| E3(PETAA)|is made up of 16 = 2™ — 8 edges of type s,v st dy =2,
dwy = 2, where sv € E (PETAA).

| E4(PETAA)| is made up of 20 * 2™ — 9 edges of type s,v stdy =2,
dwy = 3, where sv € E (PETAA).

RM,(PETAA, x) = ¥, ¢pepq) X @@+ 4w ™2

— dig\+don—2)>2 dig\+dn—2)>2
—steEl(G)x( ©+dw—2) +steE2(G)x( 9 +dw=2)

dioy+d ) —2)2 dioy+d ) —2)2
+stEE3(G)x( T )+ZSUEE4(G)x( ©*dw)=2)

:(4 * Zn)x(1+2—2)3 + (4 * 21— 2) x(1+3—2)3 + (16 * 2N 8) x(2+2—2)3 +
(20 % 2™ — 9) x(2+3-2%

RM,(PETAA, x) = (4 * 2M)x + (20 * 2™ — 10)x® + (20 * 2™ — 9)x?7
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Corollary 3.2.2: Let n € N, then the 1 Reformulated Zagreb index of
(PETAA) is given as :

RM,(PETAA) = 520 * 2" — 238.

Proof: By using a similar approach we conclude the result by evaluating the

polynomial at x = 1, This yields:

=5 [ RMy (PETAA, )] | =y=(4 * 2M)x + (20 » 2" — 10)x°
+(20 * 2™ — 9)x?’

Thus, the 1% Reformulated Zagreb Index of the Poly(Ethylene Amide Amine)
dendrimer is (PETAA) verified as:

RM, (PETAA) =520 % 2" — 238.

Theorem 3.2.3: Letn € N, then the 2" Reformulated Zagreb Polynomial of
(PETAA)is given as :

RM,(PETAA)= (4 * 2)x2% 4 (20 * 2™ — 10)x8 + (20 * 2™ — 9)x?7

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is

divided in to four sets E,, E,, Esand E, . Which are as follow.

| E;(PETAA)| include 4 2" edges of type s,v stdi =1, dy) =2,
where sv € E (PETAA).

| E;(PETAA)| include 4 2™ — 2 edges of type s,vs.tdi) =1, dy) =3,
where sv € E (PETAA).
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| E(PETAA)|include 16 * 2™ — 8 edges of type s,vs.tdy =2, dg) =2,
where sv € E (PETAA).

| E4(PETAA)| include 20 * 2™ — 9 edges of type s,vs.td) =2, d ) =3,
where sv € E (PETAA).

RM,(PETAA, x) = Y, spep ) X 1@ em 2 dw)

= dy+dpn—2)(ds*d dsy+don—2)(ds*d
- ZSUEE:L(G)X( (s) @) )( (S)* (17)) +Z SUEEz(G)x( (s ) )( (S)* (17)) +

d(s)+d(p—2)(d(s)*d d(s)+dp—2)(d(s)*d
ZSUEE3(G)X( ) Tdw)=2)ds)*dw) 4 ste&,(a)x( (9 Fdw)=2)(d(s5)*d(w))

— (4_ % Zn)x(1+2—2)(1*2) + (4 * 2N — 2) x(1+3—2)(1*3) + (16 * 2N
8) x(2+2—2)(2*2) + (20 * 2N 9) x(2+3—2)(2*3)
RM,(PETAA, x)= (4 * 2M)x + (20 * 2™ — 10)x8 + (20 * 2™ — 9)x?7,
Corollary 3.2.3: Let n € N, then the 2" Reformulated Zagreb index of
(PETAA) isgiven as :

RM,(PETAA) = 704 x 2™ — 323,

Proof: By using a similar approach used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:

% [ RMZ(PETAA,X)] |x=1: (4 % Zn)x + (20 « 2N _ 10)x8

+(20 * 2™ — 9)x?7,

Thus, the 2"  Reformulated Zagreb Index of the Poly(Ethylene Amide
Amine) dendrimer is (PETAA) verified as:

RM,(PETAA) = 704 x 2" — 323,
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Theorem 3.2.4: let n € N, then the Edge Irregularity Polynomial of
(PETAA) is given as :

IR (PETAA,x)= (16 % 2™ — 8) + (24 * 2" — 9)x + (4 * 2™ — 2)x2.

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is

divided in to four sets E,, E,, Esand E, . Which are define as follow.

| E;(PETAA)| have 4 = 2™ edges of type s,vstdy) =1, dg,) = 2, where
sv € E (PETAA).

| E,(PETAA)| have 4 x 2" — 2 edges of type s,v st dy =1, dp,) =3,
where sv € E (PETAA).

| E;(PETAA)| have 16 = 2™ — 8 edges of type s,v st d) =2, dy) = 2,
where sv € E (PETAA).

| E,(PETAA)| have 20 = 2™ — 9 edges of type s,v st d) =2, d,) =3,
where sv € E (PETAA).

IR (PETAA,X) = ¥ spep(g) x| 2@ 74w
d(s)=d ds)—d ds)—d
ZSUEEl(G)xl OROLIE stegz(c)xl ) (”)|+steE3(c)X| = dw| +
ds—d
stEE4(G)xI (s) (v)l-

= (4% Zn)xl 1-2| 4 (4% 2" —2) 2130 4 (16 x 2™ — 8) xl2-2l 4 (20 *
2™ —9) xl2-3l
IR (PETAA,X) = (16 % 2™ — 8) + (24 x 2" — 9)x + (4 * 2™ — 2)x2.
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Corollary 3.2.4: Let n € N, then the Edge Irregularity index of (PETAA) is

given as :
IR (PETAA) =32 % 2™ — 13

Proof: By using a similar approach used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:

L[ IR (PETAA, )] |xcy= (16 + 2" — 8) + (24 = 2" — 9)x

+(4 = 2™ — 2)x2.

Thus, the Edge Irregularity Index of the Poly(Ethylene Amide Amine)
dendrimer is (PETAA) verified as:

IR (PETAA) =32 2" — 13.

Theorem 3.2.5: let n € N, then the Degree Edge Stability Polynomial of
(PETAA)is given as:

DS (PETAA,x)= (16 * 2™ — 8) + (24 x 2" — 9)x + (4 * 2™ — 2)x*

Proof: The edge set of Poly(Ethylene Amide Amine) dendrimer (PETAA))is

divided in to four sets E,, E,, Ezand E, . Which are define as follow

| E;(PETAA)| contain 4 * 2™ edges oftype s,vs.td) =1, d,) = 2, where
sv € E (PETAA).

| E;(PETAA)| contain 4 = 2™ — 2 edges of type s,v stdy =1, d@) =3,
where sv € E (PETAA).
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| E;(PETAA)|contain 16 = 2™ — 8 edges of type s,vs.td) =2, dy) =2,
where sv € E (PETAA).

| E4(PETAA)| contain 20 = 2™ — 9 edges of type s,vstdy =2,dy) =3,
where sv € E (PETAA).

DS (PETAA, X)= X, speg(q) X @@ @)

= disy—d )2 dray—d )2 dron—drn)?
- Z:517615‘71((7')36( @) + steEz(G)x( ©~9@)" + steEg(G)x( ©~4w)

) SVEEL(G) x(d(s)_d(”))z .
= (4% 2Mx0D" + (4527 —2) (0" + (162" —8) x*72" + (20 +
2" — 9) x(@-3°

DS (PETAA,x) =(16 * 2™ — 8) + (24 * 2™ — 9)x + (4 * 2" — 2)x*.
Corollary 3.2.5: Let n € N, then the Degree Edge Stability index of
(PETAA) is given as:

DS (PETAA) = 40 % 2" — 17

Proof: By using a similar approach used in the proof of corollary 3.1.1, we

conclude the result by evaluating the polynomial at x = 1, This yields:

L[ DS (PETAAX) | 5oy (16 # 2" — 8) + (24 + 2" — O)x

+(4 * 2™ — 2)x*.

Thus, the Degree Edge Stability Index of the Poly(Ethylene Amide Amine)
dendrimer is (PETAA) verified as:

DS (PETAA) = 40 % 2" — 17
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Chapter Four

Computation of Topological Indices and Polynomials
of Aminoisophthalate Dister Monomer (APD[n]) and
Poly (Amid Amine) (PD[n]) Dendrimers

4.1 Computation of Topological Indices and Polynomials of

Aminoisophthalate Dister Monomer Dendrimer (APD[n]).
Introduction: The topological indices are used to obtain the topological

properties and steric structure of dendrimers or macromolecules. As has been
said earlier throughout this chapter will deal with computing some polynomials
for various different classes of dendrimers like aminoisophthalate dister

monomer (APD[n]) and poly (amidoamine) dendrimer (PD[n]).
Proposition 4.1: [41] It considered the first type of dendrimer (APD|[n]) then:

1. Order of (APD[n]) is 30 * 2™*1 — 48
2. Size of (APD[n]) is 33 = 2"*1 — 54, See figure 4.1

) X
C 1L o AN
-’S' [ I\ X [ ~ X
ON >
|

Figure 4.1: dendrimers (APD[n]) is also known as aminoisophthalate dister
monomer .
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(APD[n])structures consist six types of edges based on degree of end vertices

of each as given in table 4.1.

Table 4.1: Graph of the structures (APD[n])

(ds dy) | (12) | (1,3) (1,4) (2,2) (2,3) (34)

No. of | 32" |3%2"—3|6+x2"—6|6*2"—6|42x2"—33 |6+x2"—6
edges

First of all, we are going to calculate the Augmented Zagreb polynomial for
the molecular (APD[n])

Theorem 4.1.1: Let n € N, then the Augmented Zagreb polynomial of
(APD|[n]) is givenas :

1728

64
AZP (APD[n]),x) = (6*2"—6)x 125 + (6% 2™ —6)x27 + (32" —
27
3)x® + (51 % 2™ — 39)x8,

Proof: The edge set of aminoisophthalate dister monomer dendrimer
(APD|n]) isdivided into six sets E;, E,, E3, E,, Esand Eg. Which are define
as follow. See table 4.1.

| E;(APD[n]) | Comprise 3 = 2™ edges of type s,v std) =1, dp) =2,
where sv € E (APD|[n]).

| E;(APD[n])| Comprise 3 * 2™ — 3 edges of type s,vs.td ) =1, dwy =
3, where sv € E (APD|[n]).

| Es(APD[n])| Comprise 6 = 2™ — 6 edges of type s,vstdy =1, dy) =
4, where sv € E (APD[n]).
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| E4(APD[n])| Comprise 6 * 2" — 6 edges of type s,vstd) =2, dy,) =
2, where sv € E (APD[n]).

| Es(APD[n])| Comprise 42 = 2™ — 33 edges of type s,vs.td) =2, dg,) =
3, where sv € E (APD|n]).

| Es(APD[n])| Comprise 6 * 2™ — 6edges of type s, v s.td) =3, d) =4,
where sv € E (APD[n]).

( ds) *dw) )3
AZP (APD[n],x) = ZSVEE(G) x 4t dw)2

ds)*d@w) 3 d(s) *dw) )3
—_ dry+dn—2 dry+dn—2
=Y sveE, (@)X OO 4+ ¥ er,X ©@T™TT +

ds) *d@w) .3 d(s) * dw) )3
dey+ depn—2 dray+d,n—2
Z SVEE3(G) X 7T m + Z SVEEL(G) x 7T

d)*d@w) 3 ds) *dw) )3
dey+ dn—2 dran+dn—2
Z SVEE5(G) X &7 m + Z SVEEG(G) x ®TT®

4_

1%2 1%3 1x4
= (32" xT22 + (3+2"—3) xGH2 + (6+2" —6) xTHa? +
242 2#3 3%4

(6% 2" — 6) xF22 + (42 % 2" —33) x T3 + (6% 2" — 6) xGra2)

1728

64
AZP(APD[n],x) = (6 * 2™ — 6)x 125 + (6% 2™ — 6)x27

27
+(3 % 2™ —3)xs + (51 % 2™ — 39)x8,
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Corollary 4.1.1: Letn € N, then the Augmented Zagreb index of (APD[n]) is

given as :
AZI (APD[n]) =515.291 * 2™ — 419.291

Proof: By using a similar path we conclude the result by evaluating the
polynomial at x = 1, This yields:

1728 64

25 LAZP (APD[n], )] 1o1= (6% 2" = 6)x 725 + (6% 2" — 6)x77

27
+(3% 2" —3)xs + (51 * 2™ — 39)x5,

Thus, the Augmented Zagreb Index of the aminoisophthalate dister monomer
dendrimer is (APD|[n]) verified as:

AZI (APD[n]) = 515.291 * 2™ — 419.2901

Theorem 4.1.2: Let n € N, then the 1 Reformulated Zagreb Polynomial of
(APD[n]) is define as :

RM,(APD[n],x)= (3 *2™x + (9 % 2™ — 9)x* + (48 x 2" — 39)x°
+(6 % 2™ — 6)x25.

Proof: The edge set of aminoisophthalate dister monomer dendrimer
(APD[n]) isdivided in to six sets E;, E,, E3, E,, Esand Eg. Which are define
as follow. See table 4.1.

| E;(APD[n]) | consists 3 = 2™ edges of type s,v st di) =1, dp) =2,
where sv € E (APD|[n]).
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| E;(APD[n])| consists 3 + 2™ — 3 edges of type s,vs.tdi) =1, dgy = 3,
where sv € E (APD[n]).

| Es(APD[n])| consists 6 2™ — 6 edges of type s,vs.td) =1, d) =4,
where sv € E (APD[n]).

| E4(APD[n])| consists 6 * 2™ — 6 edges of type s,vs.tdyy =2,dy) =2,
where sv € E (APD[n]).

| Es(APD[n])| consists 42 * 2™ — 33 edges of type s,v s.td;) =2, d,) = 3,
where sv € E (APD[n]).

E¢(APD[n])| consists 6 x 2™ — 6 edges of type s,vs.tdy = 3, d, = 4,
(s) ()
where sv € E (APD[n]).
N2
RM(APD[n], x) = X speg(c) X @@ w2
=Y sve E1(G) x o+ =2 + X sve E>(G) xetde=2)" +
x(d(s)+d(v)—2)2 + x(d(s)+d(v)_2)2 +
SveE E3(Q) SVE E4(Q)
x(d(s)'l'd(v)_z)z + x(d(s)+d(v)—2)2
Z SVE E5(GQ) Z SVE E¢(GQ)
= (3%2M) x(1+2-2)% 4 (3% 2" —3) x(@+3-2)% 4 (6% 2" — 6)x(1+4—2)2 +

(6% 2" —6) x@+272° 1 (42 % 2" —33) x(2+3-2° 4 (64 2" —

6) x(3+4—2)2

RM,;(APD[n],x) =@ *2Mx+ (9* 2™ —9)x* + (48 « 2" — 39)x° +
(6% 2™ — 6)x2°.
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Corollary 4.1.2: Let n € N, then the 1% Reformulated Zagreb index of
(APD|n]) is given as :
RM,(APD[n]) =621 2™ — 537.

Proof: To confirm and compute the result of 1% Reformulated Zagreb
Polynomial, which is denoted by RM;(APD[n],x), of the dendrimer
(APD|n]), we differentiate it with respect to x, evaluating at x = 1, This

yields:

[ RMy (APD[n], )] [x1= (3 * 2 + (9 + 2% = 9)x*
+(48 * 2™ — 39)x9 + (6% 2™ — 6)x25.

Thus, the 1% Reformulated Zagreb Index of the porphyrin dendrimer is
(APD|n]) verified as:

RM, (APD[n]) = 621 % 2" — 537.

Theorem 4.1.3:Let n € N, then the 2" Reformulated Zagreb Polynomial of
(APD[n]) is define as :

RM,(APD[n],x) = (3%2")x*+ (3x2"—=3)x®+ (6 x 2™ — 6)x8 + (6 *
2" — 6)x1? + (42 % 2™ — 33) x'8 + (6 % 2™ — 6) x°°
Proof: The edge set of aminoisophthalate dister monomer dendrimer

(APD[n]) isdivided into six sets E;, E,, E3, E,, Esand Eg. Which are define
as follow. See table 4.1.
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| E;(APD[n]) | ithas 3 * 2™ edges of type s,vs.tdy =1, dg,y = 2, where
sv € E (APD[n]).

| E;(APD[n])| it has 3 % 2™ — 3 edges of type s,v s.td =1, dy) =3,
where sv € E (APD[n]).

| E3(APD[n])| it has 6 * 2™ — 6 edges of type s,v std =1,dy) =4,
where sv € E (APD[n]).

| E4(APD[n])| it has 6 * 2™ — 6 edges of type s,v s.td) =2, dy) =2,
where sv € E (APD[n]).

| Es(APD[n])| it has 42 % 2™ — 33 edges of type s,vstdy =2, dy) =3,
where sv € E (APD[n]).

| E((APD[n])| it has 6 = 2™ — 6 edges of type s,v s.tdy =3, d,) =4,
where sv € E (APD[n]).

RM,(APD[n], x) = ¥, spep( x4+ 4@ 2)@w dw)

- ds)+dm—2)(d(s)*d ds)+dpn—2)(d(s)*d
_ZSUEEl(G)x( ORI ) )*dw)) +ZSUEE2(G)X( T )( )*dw)) +

ds)+dn—2)(ds)*d ds)+dm—2)(d(s)*d
ZS‘UEE3(G)x( (ORRU) )( ()*d@)) +ZSUEE4_(G)x( )TEW) )( (s)*Aw)) +

(g +d i —2)(d(s)*d d (o) +d ) —2) (des)*d
ZS‘UEES(G)x( () +dw)=2)(d()*d(w) +stEE6(G)x( ©+dw)=2)([d5*dm)

— (3 x 2N ) x(1+2—2)(1*2) + (3 * 2N 3 ) x(1+3—2)(1*3) + (6 * 2N
6)x(1+4—2)(1*4) + (6 L 6)x(2+2—2)(2*2) + (42 x 21 —
33) x(2+3—2)(2*3) + (6 * 2N — 6) x(3+4—2)(3*4—).

RM,(APD[n],x) =@#*2")x*+B3*2"—-3)x®+(6x2"—6)x%+
(62" —6)x1% + (42 % 2™ — 33) x18 + (6 % 2™ — 6) x°°
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Corollary 4.1.3: Let n € N, then the 2" Reformulated Zagreb index of
(APD|n]) is given as :

RM,(APD[n]) = 1260 % 2" — 1092.

Proof: To confirm and compute the result of 2" Reformulated Zagreb
Polynomial, which is denoted by RM,(APD[n],x) , of the dendrimer
(APD|[n]) , we differentiate it with respect to x, evaluating at x = 1, This

yields:

%[RMZ(APD[n],x)] ey = (327" )x2 4+ (3%20 —3) x6 + (6 2" —
6)x8 + (6% 2" — 6)x'% + (42 % 2™ —33) x'8 + (6 % 2™ — 6) x°°,

Thus, the 2" Reformulated Zagreb Index of the porphyrin dendrimer is
(APD|n]) verified as:

RM,(APD[n]) = 1260 * 2" — 1092.

Theorem4.1.4: Let n € N, then the Edge Irregularity Polynomial of
(APD[n]) is define as :

IR (APD[n],x) = (6 *2™" — 6) + (51 * 2™ — 39)x + (3 * 2" — 3)x? + (6 *
2" — 6)x3.

Proof: The edge set of aminoisophthalate dister monomer dendrimer
(APD[n]) isdivided in to six sets E;, E,, E3, E,, Esand Eg. Which are define
as follow. See table 4.1.

| E;(APD[n]) | include 32" edges of type s,v stdy) =1, dy) =2,
where sv € E (APD[n]).
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| E,(APD[n])| include 3 * 2™ — 3 edges of type s, v s.t diy =1,du) =3,
where sv € E (APD[n]).

| Es(APD[n])] include 6 = 2™ — 6 edges of type s,vs.tdy =1,dy) =4,
where sv € E (APD[n]).

| E4(APD[n])| include 6 * 2™ — 6 edges of type s,vs.tdy) =2,dy) =2,
where sv € E (APD[n]).

| Es(APD[n])|include 42 2™ — 33 edges of type s,vs.td) =2, d,) =3,
where sv € E (APD[n]).

| Ec(APD[n])] include 6 = 2™ — 6 edges of type s,vs.tdy =3, dy) =4,
where sv € E (APD[n]).

IR (APD[n],x) = ¥, spe(c x' *©~ 4wl

— - d - d do—d

ap) SveE,(G) x4 dwl + 2 SVEE,(G) xldo™dol + 2 SVEE3(G) xl 4™ dol +
dis)—d di)— d dis—d

D SVEEL(G) x4 dwl + D SVEEs(G) x4~ dwl 4 D SVEEG(G) x| 4~ dw)

=(3*2Mx172 + 342" —3) x173l 4+ (6% 2" — 6)xIT7H + (6% 2™ —
6) x12721 + (42 % 2™ — 33) xI2731 + (6 x 2™ — 6)x 1374,

IR (APD[n],x) = (6% 2™ — 6) + (51 x 2™ — 39)x + (3 * 2" — 3)x?

+(6 * 2™ — 6)x3.

64



Chapter Four: Computation of Topological Indices and Polynomials
of Aminoisophthalate Dister Monomer (APD[n]) and Poly (Amid
Amine) (PD[n]) Dendrimers

Corollary 4.1.4: Let n € N, then the Edge Irregularity index of (APD[n]) is
given as :
IR (APD[n]) =75 * 2™ — 63.

Proof: To demonstrate the result of Edge Irregularity Polynomial, which is
denoted by IR (APD|[n], x) , of the dendrimer (APD[n]), we differentiate it

with respect to x, evaluating at x = 1, This yields:

%[IR (APD[n],%)] |y = (6%2™ —6) + (51 % 2" —39)x + (3 2™ —
3)x% + (6% 2™ — 6)x3.

Thus, the Edge Irregularity Index of the porphyrin dendrimer is
(APD[n]) verified as:

IR (APD[n]) = 75 * 2™ — 63.

Theorem4.1.5: Let n € N, then the Degree Edge Stability Polynomial of
(APD[n])is given as :

DS (APD[n],x) = (6%x2"—6)+ (512" —39)x+ (32" —3)x*+
(6+2™ —6)x°

Proof: The edge set of aminoisophthalate dister monomer dendrimer
(APD[n]) isdivided in to six sets E;, E,, E5, E,, Esand Eg. Which are define
as follow. See table 4.1.

| E;(APD[n]) | consists 3 2™ edges of type s,v st dy =1, dy) =2,
where sv € E (APD[n]).
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| E;(APD[n])| consists 3 * 2™ — 3 edges of type s,vs.td) =1, dg,y = 3,
where sv € E (APD[n]).

| Es(APD[n])| consists 6 2™ — 6 edges of type s,vs.td) =1, d) =4,
where sv € E (APD[n]).

| E4(APD[n])| consists 6 * 2™ — 6 edges of type s,vs.tdyy =2,dy) =2,
where sv € E (APD[n]).

| Es(APD[n])| consists 42 x 2" — 33 edges of type s, v s.td) = 2, dgy = 3,
where sv € E (APD[n]).

| Ec(APD[n])| consists 6 = 2™ — 6 edges of type s,vs.td) =3, dy) =4,
where sv € E (APD[n]).

DS (APD[n], x) = ¥, spe(q) X 4~ ®)",

_ 2 _ 2 _ 2
= Z SVEE;(G) x(d(s) dw) + Z SVEE,(Q) x(d(s) dw) + Z SVEE3(G) x(d@ d(w)) +

—de)2 IRY o,
2 SVEEL(G) x (™ w)" 4 > SVEES(G) x () =dw)” 4 D SVEEL(G) x @)= 4dw)

= (3#2M) 0D’ 4 (342" = 3) 20" 4 (64 2" — 6)x1 " + (64
2" — 6)x D" 4 (42 % 2" = 33) x@ I 4 (6 2" — 6) xCV’

DS (APD[n],x) = (6%2"—6)+ (512" —39)x+ (3*2™"—3)x*+
(6% 2™ —6)x°.
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Corollary 4.1.5: Let n € N, then the Degree Edge Stability index of
(APD|n]) is given as :

DS (APD[n]) = 117 * 2" — 105.

Proof: To evaluate the result of Degree Edge Stability Polynomial, which is
denoted by DS (APD[n], x) , of the dendrimer (APD[n]), we differentiate it

with respect to x, evaluating at x = 1, This yields:

L[S (APD[n], )] |z1= (6+2" —6) + (51# 2" —39)x + (3+2" —
3)x* + (6 % 2™ — 6)x°

Thus, the Edge Irregularity Index of the porphyrin dendrimer is
(APD[n]) verified as:

DS (APD[n]) = 117 * 2" — 105.
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4.2 Computation of Topological Indices and Polynomials of Poly
(Amidoamine) Dendrimer (PD[n]).
Proposition 4.2:[41] It considered the first type of dendrimer (PD[n])then:

1. Order of (PD[n]) is 12 = 2"*2 — 14
2. Size of (PD[n]) is 12 » 2™*2 — 15, See figure 4.2

Figure 4.2: dendrimers (PD[n]) is also known as poly (amidoamine).

(PD[n]) stretcher made up of four types of edges based on degree of end

vertices of each as given in table 4.2.
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Table 4.2: Graph of the stretcher (PD[n]).

(ds, dy) (1,2) (1,3) (2,2) (2,3)
No. of | 32" | 62" —3| 18%2™ | 212" —12
edges

First of all, we are going to calculate the Augmented Zagreb polynomial for
the molecular (PD[n]).

Theorem 4.2.1: Let n € N, then the Augmented Zagreb polynomial of
(PD[n]) is given as :

27

AZP(PD[n],x) = (422" —12)x8 + (6 %2" —3)xs

Proof: The edge set of poly (amidoamine) dendrimer (PD|[n]) is divided in
to four sets E;, E,, E5, and E,. Which are define as follow. See table 4.2.

| E;(PD[n]) | contain 3 = 2™ edges of type s, v s.td(y =1, d () = 2, Where
sv € E (PD|[n]).

| E;(PD[n])| contain 6 * 2™ — 3 edges of type s,vs.td =1, dwy =3,
where sv € E (PD[n]).

| Es(PD[n])| contain 18 = 2™ edges of type s,v st dy =2, d) =2,
where sv € E (PD[n]).

| E4(PD[n])| contain 21 * 2™ — 12 edges of type s,vs.td ) =2, d ) =3,
where sv € E (PD[n]).

ds) *dw) )3
AZP (PD [Tl], X) = Z SVEE(G) X d(5)+d(v)_2
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ds) *dw) 3 ds) *dw) )3
— diy+de,n—2 dey+ dyn—2
- Z SVEE1(G) x T + Z SVEE,(G) X “©Tm) +

ds) *d@w) 3 ds) *dw)

)3
diy+ dypy—2 diey+ dipy—2
Z SVEE3(G) X “©TTW + 2 SVEEL(G) x T

23 L3 )3 2253
= (B3x2™M) x1+2-2" 4+ (6%2™" —3) x1+3-27 4 (18 % 2™) x'2+2-27 + (21 *
243

2n —12) xGh2) .

27

AZI(PD[n],x)= (422" —12)x® + (62" —3) x 5.
Corollary 4.2.1: Let n € N, then the Augmented Zagreb index of (PD[n]) is
given as :

AZI (PD[n]) = 356.25 * 2™ — 106.125

Proof: By using a similar approach we conclude the result by evaluating the

polynomial at x = 1, This yields:

27
%[AZP(PD[TI'] )x)] x=1= (42 % 2n _ 12)x8 + (6 * 2‘)1, _ 3) x?

Thus, the Augmented Zagreb Index of the poly (amidoamine) dendrimer is
(PD|n]) verified as:

AZI (PD[n]) = 356.25 2" — 106.125.

Theorem 4.2.2: Let n € N, then the 1% Reformulated Zagreb Polynomial of
(PD[n])is define as :
RM,(PD[n],x)= (3 * 2Mx + (24 * 2™ — 3)x* + (21 x 2™ — 12)x°.

Proof: The edge set of poly (amidoamine) dendrimer (PD[n]) is divided in
to four sets E;, E,, E5, and E,. Which are define as follow. See table 4.2.
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| E;(PD[n]) | have 3 2™ edges of type s,v std) =1, dy,) = 2, where
sv € E (PD[n]).

| E;(PD[n])| have 6 2™ — 3 edges of type s,v st diy =1, dy) =3,
where sv € E (PD[n]).

| E3(PD[n])| have 18 = 2™ edges of type s,v std) =2, d(,,) = 2, where
sv € E (PD[n]).

| E4(PD[n])| have 21 « 2™ — 12 edges of type s,v std) =2, dy) =3,
where sv € E (PD[n]).

RM; (PD[n]) ,x) = ¥ syep(q) x4+ 40"

= X sve E4(G) x@orde =2 31 E»(G) x @ e =27 4

Y sve py() X EOHIW DT £ 3 o x@ordm DT 4

= (3%2") x(1+2—2)2 + (6% 2" —3) x(1+3—2)2 + (18 % 2™) x(2+2—2)2 +
(21 % 2" —12) x@+3-2)°,

RM,(PD[n],x) =(3*2Mx + (24 % 2™ — 3)x* + (21 * 2™ — 12)x°.

Corollary 4.2.2: Let n € N, then the 1% Reformulated Zagreb index of
(PD[n])isgivenas :

RM, (PD[n]) =288 * 2" — 120.

Proof: To confirm the result of 1% Reformulated Zagreb Polynomial, which
is denoted by RM, (PD[n], x), of the dendrimer (PD[n]), we differentiate it

with respect to x, evaluating at x = 1, This yields:
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%[RMl(PD[n],x)] |x=1: (3 * Zn)x + (24 « M _ 3)x4

+(21 % 2™ — 12)x°

Thus, the 1 Reformulated Zagreb Index of the poly (amidoamine) dendrimer
IS (PD[n]) verified as:

RM,(PD[n]) =288 * 2" — 120.

Theorem 4.2.3:Let n € N, then the 2" Reformulated Zagreb Polynomial of
(PD[n])is define as :

RM,(PD[n],x)=(3 * 2™ )x? + (6 x 2™ — 3 )x% + (18 * 2™)x8 + (21 = 2" —
12)x18

Proof: The edge set of poly (amidoamine) dendrimer (PD[n]) is divided in

to four sets E;, E,, E5, and E,. Which are define as follow. See table 4.2.
| E;(PD[n]) | Be composed of 3 = 2™ edges of type s, v s.td) =1
dwy = 2, where sv € E (PD[n]).

| E;(PD[n])| Be composed of 6 * 2" — 3 edges of type s,v std =1,
d«yy = 3, where sv € E (PD[n]).

| E3(PD[n])| Be composed of 18 = 2™ edges of type s, vs.td) =2, d ) =
2, where sv € E (PD[n]).

| E4(PD[n])| Be composed of 21 * 2™ — 12 edges of type s,vs.td ) = 2,
dwy = 3, where sv € E (PD[n]).

RM,(PD[n], x) = . speg(c) x4+ ~2) e dw),
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= dio+don—2)(dg*d dratdn—2)dsoxd
=Y sver, (@ X0 0D + ¥ o x (Aot =2) e de) 4

d(s)+d(p)—2) (ds)*d ds)+dw)—2)(d(s)*d
250553(G)x( ©+dw)=2)(d(5)*dw) +ste54((;)x( ©+dw—2)(ds)*dw) 4

— (3 % 2N )x(1+2—2)(1*2) + (6 %« 2N _ 3 )x(1+3—2)(1*3) + (18 %
Zn)x(2+2—2)(2*2) + (21 % 2N — 12)X(2+3_2)(2*3).

RM,(PD[n],x)= (3*2™)x%+ (62" —3)x®+ (18*2™)x8 +
(21 % 2™ — 12)x18,

Corollary 4.2.3: Let n € N, then the 2" Reformulated Zagreb index of
(PD[n])isgivenas :
RM,(PD[n]) =564 % 2™ — 234,

Proof: To compute the result of 2" Reformulated Zagreb Polynomial, which
is denoted by RM, (PD[n], x) , of the dendrimer (PD[n]), we differentiate it

with respect to x, evaluating at x = 1, This yields:

% [ RMz(PD[n],x)] [x=1= (3 * 2" )x? + (6 + 2" =3 )x° +
(18 * Zn)x8 + (21 % 2N — 12)X18

Thus, the 29 Reformulated Zagreb Index of the poly (amidoamine)

dendrimer is (PD[n]) verified as:

RM,(PD[n]) =564 = 2" — 234.
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Theorem4.2.4: Letn € N, then the Edge Irregularity Polynomial of (PD[n])is

define as :
IR (PD[n],x) = (18 % 2™) + (24 * 2™ — 12)x + (6 * 2™ — 3)x2.

Proof: The edge set of poly (amidoamine) dendrimer (PD[n]) is divided in

to four sets E;, E,, E5, and E,. Which are define as follow. See table 4.2.

| E1(PD[n]) | consists 3 = 2™ edges of type s, v s.td(y = 1, d () = 2, Where
sv € E (PD|[n]).

| E,(PD[n])| consists 6 x 2™ — 3 edges of type s, v s.t dy=1,dw) =3,
where sv € E (PD[n]).

| Es(PD[n])| consists 18 = 2™ edges of type s,v st d) =2, dy) =2,
where sv € E (PD[n]).

| E4(PD[n])| consists 21 * 2™ — 12 edges of type s, v s.td) = 2, d ) =3,
where sv € E (PD[n]).

IR (PD [n]r X) = Z svEE(G) xl 4~ dw)l
2 SVEE;(G) x4~ dwl + D SVEE,(G) x4~ dml 4 D SVEES(G) x4~ dwl 4
Z SVEEL(G) x! 4o~ dwl,

= (3 2Mx1=2l 4 (6% 2™ — 3)x!1=31 4 (18« 2M)x 1272l 4 (21 + 2™ —
12)x12731,

IR (PD[n],x) = (18 * 2™) + (24 * 2™ — 12)x + (6 = 2™ — 3)x>.
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Corollary 4.2.4: Let n € N, then the Edge Irregularity index of (PD[n]) is

given as :
IR (PD[n]) =36 x 2™ — 18.

Proof: To demonstrate the result of Edge Irregularity Polynomial, which is
denoted by IR (PD[n], x) , of the dendrimer (PD[n]), we differentiate it with

respect to x, evaluating at x = 1, This yields:

%“R (PD[n], x)] [x=1 = (18 2™) + (24 % 2" — 12)x + (6 * 2™ —
3)x?2.

Thus, the Edge Irregularity Index of the poly (amidoamine) dendrimer is
(PD|n]) verified as:

IR (PD[n]) = 36 = 2" — 18.

Theorem4.2.5: Let n € N, then the Degree Edge Stability Polynomial of
(PD[n]) is given as :

DS (PD[n],x) = (18 * 2™) + (24 * 2™ — 12)x + (6 * 2™ — 3)x*.

Proof: The edge set of poly (amidoamine) dendrimer (PD[n]) is divided in

to four sets E;, E,, E5, and E,. Which are define as follow. See table 4.2.

| E(PD[n]) | include 3 = 2™ edges of type s, v s.td(y =1, d () = 2, Where
sv € E (PD[n]).

| E;(PD[n])| include 6 * 2™ — 3 edges of type s,vs.td =1, dwy =3,
where sv € E (PD[n]).
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| E3(PD[n])| include 18 2™ edges of type s,v st d) =2, dpy =2,
where sv € E (PD[n]).

| EA(PD[n])|include 21 + 2™ — 12 edges of type s,vs.td) =2, dy) =3,
where sv € E (PD[n]).

DS (PD[n],%) = ¥ sper () x 440’

= ¥ swery (@ X OO+ pep, @ X0 TIO 4 3 e, g x0TI +

I ICORLONS

= (3 * 2" )x(1—2)2 +(6%2m — 3)x(1—3)2 + (18 2")x(2‘2)2
+(21 % 2" — 12)x@3°,

DS (PD[n],x) = (18 * 2™) + (24 * 2™ — 12)x + (6 * 2" — 3)x*

Corollary 4.2.5: Let n € N, then the Degree Edge Stability index of
(PD[n])isgivenas :
DS (PD[n]) = 48 * 2™ — 24,

Proof: To calculate the result of Degree Edge Stability Polynomial, which is
denoted by DS (PD|[n], x) , of the dendrimer (PD|[n]), we differentiate it with

respect to x, evaluating at x = 1, This yields:
L[ DS (PD[n],%)] |yo1= (18 * 27) + (24 % 2™ — 12)x

d(x)

+(6 * 2™ — 3)x*.
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Thus, the Edge Irregularity Index of the poly (amidoamine) dendrimer is
(PD|n]) verified as:

DS (PD[n]) = 48 * 2™ — 24.

77



Chapter Five: Differences Between Augmented Zagreb Index and
Edges Irregularity Index.

Chapter Five

Differences Between Augmented Zagreb Index and

Edges Irregularity Index.

Introduction: we examine new mathematical relationships between two
significant degree-based topological indices. the Augmented Zagreb Index
(AZl) and the Edge Irregular Stability Index (EIS). Using the classical
inequalities Cauchy-Schwarz and Jensen's inequalities, we derive new upper
and lower bounds for these indices. These bounds enhance our understanding
of the structural behavior of graphs and provide useful tools in chemical graph
theory. Prior to declaring the main results, we recall basic inequalities that are
at the heart of our derivations.

1. Cauchy- Schwarz inequality: [34,42] if a4, .... ,a, and b4, .... , b, are

real number
Than
n 2 n n
(o) = (2ee) ()
i=1 i=1 =1
Or

n

n
[ o [S
i=1

i=1

2. Jensen’s inequality: [35] let f(x) be a convex function defined on

interval I if x;, .... ,x, € [and 44, .... ,4, = 0with >, 4; then
n n
f (Z Z x1> YD
i=1 i=1
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5.1: Relation between Augmented Zagreb index and Edge

Irregularity Stability index.
In this section we introduce a link with the Augmented Zagreb Index

and the Edge Irregular Stability Index. Such indices have different degree
values on which they depend, but can be linked via inequalities and structural

graph properties.

Proposition 5.1: [32,33] Let G be connected graph with m edges. Then

dgxdy
ds+dv_2

AZI(G) = Ysvere)( )3. Using Jensen’s Inequality with the convex

function f(x) = x3 so, we will have

1 dgxdy,
AZI(G) =m (EZSUEE(G)(dﬁdv—Z)B)'
Let us denoted this average value by A = %ste E(g)(d d:;d'iz)E‘). So,

AZI(G) = m (4)3

To bound 4, note that the denominator: d, + d, — 2 > |d, — d,,| , thus

dg*dy = dg*dy
ds+d,—2 = |dg—dy|+2

. By using Cauchy — Schwarz inequality:

Xsvere) dsdy)® < MY sper)(ds * dyy)?. If we combine both side, we get

that.

1
AZI(G) = m2 (stEE(G) dsdv)3/(25veE(G)|ds - dv|)3 . It was pl’OVGd
EIS(G) # 0

If we let;

S1= (steE(G) dsdv)3 and S, = (steE(G)lds - dvl)g-
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Then by Holder’s inequality (in a generalized form), we approximate

51

AZI(6) 2 — A

This connects the AZI to the irregularity measured by EIS.

Example: 5.1.1: Consider the star graph S,, it has one central vertex of degree

n—1and n —1 leaves of degree 1. Than,
EIS(S,) = (n—1)(n—2), and AZI (S,) = (n— 1))

Now let us to compute:

SS=(n—1)(n-1), and S, =(n—1D(n—-2)
Thus;
(n-1)3 ) . .
AZl (Sn) > m , Slmpllfy
AZI(S,) = ——
( n) - (n _ 2)3

1
AZI (S,) = (mf

Let m = n — 1 and we will multiply by m we recover .

AZI (S,) = (n — 1)(

)3

n—2

Matching the earlier exact formula.
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Example 5.1.2: consider the complete graph K,,, has all vertex degrees are
equal (d =n—1). So,

(n-1)°

n
EIS(K,) =0 and AZI (Ky,) = (2) (Z(n—l)—z

)3

This shows that whenever the graph is regular (d, =d,) , the n AZI is

maximal in uniform degree graphs while EIS vanishes.

Example 5.1.3: Let G be a path graph P, with vertices of degrees (1,2,2,1).
Than;

EIS(B) = |1-2|+12-2|+|2—-1] = 2. When -edges are
(1,2),(2,2),(2,1). And;

AZI(P) = R
"_(1+2—2) (2+2—2) (2+1—2

)3
AZI(P,) = 20
Now, compute
S$1=12+22+2.1
Sl == 8

AZI(Pn)z( ] ) °12

= — = 7.11
32 %2 72
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5.2: New upper and lower bounds of Augmented Zagreb index
AZI(G)

Theorem 5.2.1: Let G be a graph with minimum degree § , maximum

degree A, and m edges. Then,

52\’
>
AZI(G) = m <2A_2>

Proof: Since d; = § and d,, = & if follows that the numerator d.d,, > &2.
Meanwhile, the maximum possible denominator is dg +d, —2 < 2A—2

therefor for every edge sv € E(G).

2 3
: dsd,,_ o s 6_
ds +d, — 2 20 — 2

Now summing over all m edges we get.

52 \°
>
AZI(G) = m <2A—2>

Equality holds if and only if all vertex degrees equal § andd, +d,, —2 =
2A — 2, i.e. the graph is regular.
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Theorem 5.2.2: Under the same conditions we have the upper bound

A2 3
<
AZI(G) < m <26 — 2)

Proof: Here, d, < Aand d, < Aif follows that the numerator d,d,, < A?.
Meanwhile, the minimum possible denominator is d; +d, —2 = 2§ — 2

therefor for every edge uv € E(G).

A2\’
<
AZI(G) < m <28—2>

The equality is attained when all degrees are equal to A.
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5.3: New Upper and Lower Bounds of Edges Irregularity
Stability Index EIS (G)
Theorem: 5.3.1: [16,17] For a graph G with m edges and degree range

o toA.
EIS (G) = |A — §|

Proof: at minimum if only one edge in the graph connects vertices of degrees

& and A than the sum is at least |A — &| therefor
EIS (G) = |A — 6]

Equality holds if and only if all other edges contributes zero (i.e., they connect

verities of equal degrees).
Theorem: 5.3.2: [9,32] Under the same condition
EIS (G) <m |A - §]

Proof: since the maximum absolute difference for any edges uv € E(G) is

A — 6 the sum over all m edges is bounded above by .
EIS (G) <m (A - 9)
Equality holds in highly irregular graphs like star graphs.

Example 5.3.1: consider the star graph S,, where one vertex has degrees n —

1 and n — 1others have degree 1

Than,

FIS(S) = ) [(a—1) —1] = (a = D(n - 2)

This is the case of maximum irregularity.
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Example 5.3.2: for a complete graph K,, all degrees are equal, So;
EIS (K,) =0

This is illustrating the equality case for regular graphs
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Chapter Six

Conclusion and Future Studies

6.1 Conclusion:
This study applies graph-theoretical tools to investigate the topological

properties of key dendrimer families such as PETIM, PAMAM, poly
propylenimine octaamin, zinc porphyrins, and porphyrins. Polynomial
expressions were derived for several degree-based indices, including the
Augmented Zagreb Index (AZI), Reformulated Zagreb Indices (RM:, RM>),
the Edge Irregularity Index, and the Degree-Based Stability Index. These
polynomials provide improved modeling of molecular branching across
dendrimer generations. Analytical relationships and bounds between AZI and
the Edge Irregularity Index were also established, offering new mathematical
insight into molecular irregularity and stability. Overall, this work strengthens
the theoretical foundation for dendrimer research and suggests new

applications in chemistry, nanotechnology, and materials science.
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6.2 Recommendations and Future Studies.

Future research is suggested by this study, as explained below:

1. The computation of topological indices and new graph polynomials for

dendrimers that are discussed in the paper.

2. The investigation of novel dendrimers for the same topological indices and

graph polynomials that are calculated in this work.

3. Determining updated upper and lower bounds for the stability Zagreb

indices based on degree.

4. Determining the first and second reformulated Zagreb index's new upper

and lower bounds.
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