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Abstract 

Otitis media (OM) is typified by inflammation and accumulation of fluid in 

the region beyond the eardrum and contains the little bones that are 

involved in hearing.  OM is a leading cause of hearing impairment globally. 

Accurate diagnosis of OM is a critical in medical field, but its diagnosis in 

primary care is hindered by limited equipment and specialist expertise, 

variations in clinicians’ interpretations, and misdiagnoses. In the recent 

times, deep learning techniques offer a feasible approach for automating the 

classification of diseases in OM. This thesis focuses on the classification 

method for OM diseases based on tympanometry data. Tympanometry data 

consist of pressure and compliance curves representing middle ear function.  

The proposed method consists of four phases: collecting a new dataset from 

five clinical centers for 892 patients and data preprocessing, dataset 

splitting, model creation and training, after that the evaluation phase. This 

thesis introduces a new model that combines Artificial Bee Colony 

algorithm with Long Short-Term Memory (ABC-LSTM) to optimize 

hyperparameters for classifying five classes ( A, B, C, Ad, As) of OM 

diseases. The proposed model can deal with the temporal data because of 

LSTM and optimize LSTM’s hyperparameter because of the ABC 

algorithm, which makes the proposed model very suitable to classify OM 

diseases using tympanometry data. 

The proposed model (ABC-LSTM) demonstrated robust convergence 

during training and achieved an accuracy of 95.96%, precision of 96.11%, 

recall of 96.32%, and F-score of 96.16%  on the test dataset. In addition, it 

significantly outperformed all other models in the conducted experiments 
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on a variety of metrics for the newly dataset, as well as the previously 

published works. These results indicate a viable categorization for OM 

diseases based on tympanometry data to aid classification OM, contributing 

to medical and computational disciplines, and show comparable agreement 

to subspecialist doctors in diagnosis OM in early stages. 
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1 Chapter One 

Introduction and Research Background 

1.1 Introduction 

This chapter provides an overview of the research direction, specifies 

the problem statement, and describes the rationale for undertaking this 

study to attain its goals. Section (1.2) presents a brief background on the 

research topic, offering context and highlighting key developments. Section 

(1.3) defines the research problem, emphasizing the existing challenges and 

gaps in knowledge. Section (1.4) outlines the research objectives, detailing 

the specific goals this study aims to accomplish. Section (1.5) highlights the 

scope of this study. Finally, Section (1.6) shows the organization of the 

thesis. Together, these sections establish a clear foundation for the thesis. 

1.2 Background of the Study 

Hearing is one of our most important senses. It is fundamental to 

building relationships and for humans to communicate verbally with 

friends, families, and peers [1]. Children learn to speak through hearing 

sounds. Therefore, hearing impairments can interfere with a child’s speech 

and language development and increase their risk of additional disabilities, 

which is any condition that increases the difficulty of participating in 

certain activities or effectively interacting with the world around them. 

Prompt detection, diagnosis, and intervention are essential for the effective 

treatment of hearing loss to prevent adverse impacts on sleep, psychosocial 

well-being, interpersonal communications, school readiness, and speech and 

language development in children [2]. 
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The human ear is divided into three parts: the outer ear, the middle 

ear, and the inner ear, as illustrated in Figure (1.1). The eardrum (tympanic 

membrane - TM) is a thin, cone-shaped membrane that divides the exterior 

and middle ears [3]. The middle ear anatomy is made up of three little 

bones (malleus, incus, and stapes) that transfer sound waves to the inner ear. 

The middle ear also has a Eustachian canal, which connects it to the nose. 

This tube aids in the equalization of air pressure in the middle ear, which is 

required for optimal sound transmission. 

 

Figure ‎1.1: The outer ear, middle ear, and inner ear of the human ear [4]. 

The outer ear comprises the auricle (pinna), which collects sound 

waves and directs them into the ear canal for amplification. The sound 

waves subsequently strike the eardrum, inducing vibrations. The vibrations 

in the middle ear are amplified and conveyed by three small ossicles—the 

malleus, incus, and stapes—through the oval window to the inner ear. 
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Amplification in the middle ear primarily arises from two mechanisms. The 

primary contribution arises from the disparity in size between the area of 

the eardrum and the stapes footplate that connects to the oval window. The 

eardrum encompasses an area of roughly 55 mm², whereas the surface area 

of the stapes footplate is approximately 3.2 mm² [5]. External sound waves 

in the ear canal apply force to the larger surface area of the eardrum, 

subsequently concentrating this energy onto the smaller surface area of the 

stapes footplate, so generating significantly higher pressure at that location. 

The secondary amplification mechanism arises from the lever-like function 

of the ossicular chain.  

As the malleus is longer than the incus, it traverses a greater distance; 

nonetheless, the incus exerts higher force, so amplifying the pressure 

conveyed by the stapes faceplate to the oval window. The Eustachian tube 

regulates air pressure equilibrium by linking the middle ear to the 

pharyngeal cavity [6]. In the inner ear, vibrations traverse the fluid-filled 

cochlea, stimulating nerve cells that transmute the vibrations into electrical 

messages. The impulses are subsequently transmitted to the brain for 

auditory processing. The inner ear houses the vestibular system, which is 

essential for balance maintenance. 

Middle ear disease (MED) refers to a group of conditions that affect 

the middle ear, such as trauma or inflammation, leading to disturbances of 

normal middle ear function [7]. It encompasses a wide range of disease-

causing conditions, the most common being otitis media (OM), arising from 

bacterial or viral causes [8]. Other MEDs include eustachian tube 

dysfunction (ETD), cholesteatoma, and fungal infections. 
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OM is a common childhood condition, where the Global Burden of 

Disease (GBD) study indicates that the incidence of Otitis Media (OM) 

among children rose by 40,940,535 from 1990 to 2021. This underscores 

the significance of addressing OM in children as a pivotal strategy for 

alleviating the burden of noncommunicable diseases within this 

demographic [9]. with a bimodal prevalence, where the first and most 

prominent peak occurs in children around two years old and the second 

peak around five years old [10]. OM can be associated with colds, as 

otopathogens that typically reside in the nasopharynx can ascend the 

eustachian tube to the middle ear, manifesting into OM. 

The clinician may use an otoscope and a tympanometry test to 

diagnose otitis media. An otoscope is a medical equipment that commonly 

used to inspect the auditory canal for conditions such as cerumen impaction 

and acute otitis media [11]. Tympanometry is an acoustic test that evaluates 

eardrum vibration in response to varying air pressures within the ear canal 

[12], as shown in Figure (1.2). It is widely used to detect middle ear 

effusion with high accuracy but can be challenging to perform on children 

because it requires them to stay still. During the test, a tympanometer 

equipped with a microphone alters the air pressure while emitting a low-

pitched tone—typically 226 Hz, though other frequencies may be used 

when needed. The device records the eardrum’s movement, and the results 

are displayed on a tympanogram, reflecting the ear’s pressure–mobility 

relationship. Artificial intelligence (AI) is revolutionizing healthcare by 

improving diagnostic accuracy, treatment planning, and patient outcomes 

[13]. Deep learning (DL) models, in particular, have shown significant 
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potential in analyzing complex medical data, enabling faster and more 

precise disease detection [14]. 

 

Figure ‎1.2: Tympanometry [15]. 

In the case of Otitis, DL-based classification systems can assist in 

distinguishing different types of the condition with high accuracy, reducing 

misdiagnosis and improving treatment strategies. By leveraging advanced 

AI techniques, healthcare professionals can make more informed decisions, 

leading to better patient care [16]. Therefore, this thesis introduces a 

method capable of classifying Otitis media problems, and to reduce human 

errors in diagnosis, relying on ABC-LSTM model. 

1.3 Problem Statement  

Otitis Media, a prevalent ear condition, requires precise identification 

of its different types to facilitate appropriate treatment and management. An 

effective diagnosis of middle-ear diseases has the potential to prevent 

hearing loss and antibiotic resistance. In low- and middle-income nations, at 

least half of otitis media cases cause hearing loss if left untreated, middle-

ear diseases can lead to a variety of consequences, including balance issues, 

meningitis, and brain abscess [17]. Middle-ear problems are diagnosed with 
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tympanometry and otscopy testing. Tympanometry is the better devices for 

accurate diagnosis for OM [18]. However, the diagnose remains difficult for 

many audiologists because of the lack of experience of medical staff on 

how to use the device properly, this made to  misdiagnosis if results are not 

interpreted correctly [19]. In addition, this device may be unavailable in 

nursing homes for the elderly [20], where AI can provide portable, 

smartphone-based tympanometry systems that autonomously evaluate 

eardrum responses, enabling precise remote assessments in nursing homes. 

In addition, the children cannot respond reliably to standard hearing tests 

due to excessive movement or fear. Therefore, accurate diagnosis of OM 

remains a real challenge due to the reliance on physicians' expertise and the 

difficulty of using current equipment. Hence, the need to develop an 

intelligent system capable of analyzing medical data or images to improve 

the accuracy and speed of diagnosis and reduce the possibility of error. 

1.4  Research Objectives  

The primary objective of this thesis is to classifying OM diseases 

based on tympanometry data to help the doctors in diagnosis. The sub-

objectives of this thesis are: 

 To create a new tympanometry dataset (tymp-OM) collected from 

various medical centers in Iraq, which contains five categories: one 

healthy and four diseases. The dataset have two formats: 

tympanograph image and electronic APX.  

 To optimize the performance of an LSTM-based deep learning model 

for tympanometry classification using Artificial Bee Colony (ABC) 

algorithm for hyperparameter tuning. 
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 To assess the effectiveness of the proposed model in OM diagnosis 

using standard classification measures. 

1.5 Research Scope 

The research scope in this thesis revolves around several points, they 

are as follow: 

1. This thesis classify OM diseases (one healthy and four diseases) 

based on Tympanometry data. 

2. The dataset is private which obtained from various medical clinic in 

Iraq (Tikrit, Musol, and Baghdad). 

3. Using LSTM + ABC Algorithm. 

1.6 Outline of the Thesis 

This thesis is organized, including this chapter, as outlined below: 

Chapter Two: contains the main OM disease, artificial intelligence, deep 

learning, the techniques utilized in this thesis will be discussed in this 

chapter. Also, reviews existing studies on Otitis Media diagnosis using 

artificial intelligence methods, and identifies research gaps addressed in this 

thesis. 

Chapter Three: details the methodology adopted in the research, including 

dataset collection, data preprocessing, model development, and evaluation. 

It explains the design and optimization of the Long Short-Term Memory 

(LSTM) model using the Artificial Bee Colony (ABC) algorithm. 

Chapter Four: presents the experimental results obtained from training and 

evaluating the proposed model. It analyzes performance metrics such as 
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accuracy, precision, recall, and F1-score, discussing the findings in 

comparison with existing methods. 

Chapter Five: presents the benefit and summarizes conclusion of the 

thesis. In addition, concludes suggestion directions for future investigations 

in AI-based tympanometry classification and OM diagnosis.
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2 Chapter Two 

Literature Review 

2.1 Introduction 

This chapter delineates the theoretical underpinnings essential for 

comprehending the suggested intelligent diagnostic methodology for Otitis 

Media (OM). It commences by elucidating the physiological and 

pathological principles pertaining to the middle ear, encompassing prevalent 

conditions that influence auditory systems. The following sections delineate 

tympanometry as a diagnostic method, detailing its concepts, measuring 

parameters, and clinical relevance. The chapter then presents the 

fundamental ideas of AI, Machine Learning (ML), and Deep Learning 

(DL), highlighting their significance in medical diagnosis and data-

informed decision-making. This chapter concentrates on advanced neural 

architectures, including Convolutional Neural Networks (CNN), Multi-

Layer Perceptrons (MLP), and Long Short-Term Memory (LSTM) models. 

The chapter finishes with a summary of optimization algorithms, evaluation 

metrics, and software tools, providing a thorough theoretical foundation for 

the forthcoming research methodology and experimental design. 

2.2 Overview of Otitis Media 

Otitis Media (OM) diseases is a type of infectious disease caused by 

viruses and/or bacteria in the middle ear cavity. OM is a common and 

potentially serious condition characterized by inflammation or infection of 

the middle ear [21]. It is particularly prevalent among children and 

represents a major cause of hearing impairment in developing countries. 
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The condition manifests in various forms, such as Acute Otitis Media 

(AOM), Otitis Media with Effusion (OME), and Chronic Otitis Media 

(COM), each with distinct pathological features and clinical implications 

[22]. 

 Acute otitis media (AOM) is a condition in which fluid and mucus 

accumulate inside the middle ear, resulting in ear pain, fever, or 

temporary hearing loss. It grows swiftly, resulting in swelling and 

redness [21]. 

 Otitis medium with effusion (OME): Fluid and mucus continue to 

accumulate after the beginning of AOM. 

 Chronic otitis media (COM) is characterized by the presence of fluids 

in the middle ear for extended periods of time without an infection. 

While this condition usually not cause serious disease, it may create 

complications if new ear infections occur. 

 Eustachian tube dysfunction: Eustachian tube dysfunction (ETD) 

refers to the failure of the eustachian tube to perform any of its 

functions. ETD usually presents symptoms of pressure (aural 

fullness), “popping sensations”, “underwater sensations”, crackling, 

ringing, muffled hearing, or own voice sounding louder (autophony). 

 Perforated TM: Perforations of the TM refer to a hole or a tear in the 

eardrum. It can be caused by trauma or as a complication of AOM or 

Chronic Suppurative Otitis Media (CSOM). CSOM is identified as 

long-standing inflammation of the middle ear and mastoid mucosa 

with a perforated TM and persistent ear discharge [8]. 

 Tympanic membrane retraction (TMR) is a syndrome characterized 

by the inward displacement of a portion of the tympanic membrane 
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into the middle ear cavity, sometimes referred to as a retraction 

pocket, and is often observed in juvenile otorhinolaryngology.  The 

incidence of TMR in children is documented to be between 8% and 

10% [23]. Figure (2.1) shows middle ear conditions for visual 

representations [24].  

 
Normal 

  
Acute otitis media (AOM) 

 
Otitis media with effusion (OME) 

 
Perforated tympanic membrane 

 
Retracted tympanic membrane 
Figure ‎2.1: Middle ear conditions. 
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An infection of the upper respiratory tract brought on by a virus or 

bacteria causes inflammation of the nasopharynx and the Eustachian tube, 

which prevents the latter and keeps fluid in the middle ear. This increases 

bacterial adhesion and colonization. Additionally, Eustachian tube 

dysfunction results in negative middle ear pressure, which permits 

nasopharyngeal germs and/or viruses to enter the middle ear and cause 

inflammation and infection. Mistakes or delays in diagnosing otitis media 

may have detrimental effects such as persistent inflammation, loss of 

hearing, and harm to the eardrum [25]. Most serious consequences may be 

mastoiditis, meningitis, or even brain abscesses [26]. In addition, over-

prescribed antibiotics because of misdiagnosis can lead to resistance, which 

is difficult to treat [27]. Therefore, prompt and precise diagnosis is critical 

in avoiding complications and employing appropriate strategies. 

2.3 Tympanometry Technique 

The Tympanometry is a non-invasive diagnostic technique and it’s a 

recent development that measures the mobility of the tympanic membrane 

and middle ear structures in response to changes in air pressure. 

Tympanometry provides both qualitative and quantitative data, enabling 

clinicians to detect abnormalities such as fluid accumulation, negative 

pressure, or tympanic membrane perforations. This technique uses a series 

of both positive and negative pressure offsets to acoustically define the ear 

canal. Conclusions on middle ear health and eardrum movement may then 

be made [28]. Figure (2.2) depicts how the determination of absorbance 

tympanometry works. An acoustic probe that forms an airtight seal in the 

ear canal is used. 
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The probe’s microphone contains a sound-capturing device that emits 

sound at 226 Hz or 1 kHz at a level of around 85dB SPL. The level of 

sound is termed as sound pressure level (SPL). Adults generally utilize 226 

Hz while 1 kHz is utilized in pediatric tympanometry, but the frequency 

range depends on the patient. The resulting sound pressure level in the ear 

canal is determined by the variations in the energy of sound that is absorbed 

and reflected.  

 

Figure ‎2.2: Standard absorbance tympanometry using an acoustic probe 

with an airtight seal in the ear canal [29]. 

During the measurement, the device changes the ear's pressure from 

+200 to -400 decaPascal (daPa). As the middle ear structures and eardrum 

tension fluctuate, the absorbed energy also changes with the pressure 

change. A tympanogram is then used to show these effects [29], which 

displays the admittance spectrum in contrast to the pressure showing the 

greatest level of diagnostic understanding. Quantitative information can be 

produced by tympanometry, e.g. numerical and graphical data of pressures 

that are both positive and negative which are generated and the amount of 

sound energy absorbed by the middle ear system together with ear canal 

volume [30]. Among these measurements: 
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 Peak Pressure (PP): As the pressure delivered to the ear canal 

declines from 200 daPa, the acoustic energy of the probe tone 

continues. The sound of the probe tone and the energy transmitted to 

the middle ear reach a max level when the pressures from both 

parties of the TM are balanced. Although pressures in the range of –

50 to +50 daPa can be regarded as reasonable in adults, thoroughly 

monitored circumstances the 95% range in healthy subjects is –20 to 

+20 daPa. Moreover, pressures as low as –100 daPa may not be of 

clinical significance [31]. 

 Compliance: It measures the flexibility or mobility of the eardrums 

and middle ear system in reaction to sound or pressure [32]. It is 

computed from the tympanogram by analyzing the peak of the 

acoustic admittance curve, which represents the maximum mobility 

of the eardrums and middle ear system. Reduced compliance 

suggests stiffness or fluid in the middle ear, while increased 

compliance may indicate hypermobility or tympanic membrane 

damage. 

 Ear Canal Volume (ECV): ECV can be measured and displayed on 

the tympanogram printout, and the normal range is age-dependent. 

Moreover, across all age groups, females have a lower ECV than 

men. The most important utilization of the ECV measurement is to 

make a distinction between normal and perforated TMs or between 

tympanostomy tubes that are obstructed and those that are working 

[33]. Adult ECV ranges from 0.6 to 1.5 cm3, whereas children's ECV 

ranges from 0.4 to 1.0 cm3. 

 Tympanometric Width (Gradient): Gradient is the pressure interval 

including one half peak of the admittance in the plane of the TM. In 
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the plane of the TM, gradient has a low association with Peak 

Admittance (PA)  and a narrow normal distribution that is 

independent of pump speed, making it the preferable measure, 

bringing complementary instead of redundant knowledge about the 

middle-ear transmission system [34]. A value of less than 200 daPa 

may be considered typical for children aged one to seven if the 

gradient is used as a description. 

Tympanometry data are typically depicted as a tympanogram, 

categorized into several categories as shown in Figure (2.3) according to the 

patterns established by Liden and Jerger [35].  

 

Figure ‎2.3: Five types of data tympanograms [36]. 

 Type A denotes typical middle ear function, marked by normal 

pressure and compliance.  

 Type As (shallow) signifies reduced compliance, often associated 

with inflexible middle ear components, as seen in otosclerosis.  

 Type Ad (deep) configuration signifies markedly increased 

compliance, which may be attributable to ossicular discontinuity or a 

relaxed tympanic membrane.  
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 Type B is characterized by a flat trace, usually indicating fluid in the 

middle ear, a perforated tympanic membrane, or impacted cerumen.  

 Type C displays a peak with negative pressure, signifying Eustachian 

tube dysfunction, which is commonly associated with otitis media 

with effusion (OME). 

This classification system aids in diagnosing various middle ear 

problems and guides appropriate treatment techniques. 

2.4 Artificial Intelligence 

The cognitive abilities of the human mind can be replicated by robots 

using the artificial intelligence (AI) branch of computer science. AI 

frameworks attempt to address puzzles that these algorithms are incapable 

of explaining in the classical sense [37]. Artificial intelligence, with all its 

advantages, is now transforming human society. AI has also been accepted 

in the educational sphere toward betterment of guiding students learning 

processes and other educational activities [38]. In the context of enhancing 

human comfort and technology advancement, researchers and AI scientists 

are using AI tools and methodologies [39]. 

Intelligent machines capable of human-like learning and reasoning 

are the products of AI technologies. It has found successful application in 

several industrial domains Computer vision, speech recognition, 

autonomous vehicles, and picture categorization AI has set numerous 

milestones. AI applies a range of logic, probabilistic and economic 

techniques, as well as search and mathematical optimization algorithms 

[40]. The domain of artificial intelligence encompasses several domains, 

including Computer science, mathematics, psychology, linguistics, 
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philosophy, neuroscience, and artificial psychology [41]. Implementation of 

AI will facilitate development of design procedures based on data-driven 

security protocols. 

Determining methods for enabling a machine to recognize and 

formulate medical abstractions and clinical concepts and solve complex 

healthcare problems is a key focus of AI research. Advances in processing 

power, the development of sophisticated algorithms, and the continuous 

accumulation of large-scale medical data have led to a rapid expansion of 

AI applications across almost every area [42]. Whether in diagnostics, 

personalized treatment, or administrative tasks, Artificial Intelligence (AI) 

is increasingly playing a transformative role. In the context of medicine, AI 

can be broadly defined as the ability of machines to simulate human clinical 

reasoning, learning from data to support or even enhance decision-making 

in patient care and medical research, where the common attribute of AI is 

the ability to simulate reasoning processes of human beings in learning and 

resolving tasks or challenges [43]. AI research covers a range of topics 

including Machine learning (ML), Deep learning (DL), and other related 

fields. 

2.5 Machine Learning 

Recognition of patterns in data and making decisions with minimal 

human help is possible through the utilization of machine learning, a 

subdivision of artificial intelligence. Based on their learning strategies and 

approaches to problem-solving, machine learning algorithms can be roughly 

divided into three main categories: reinforcement learning, unsupervised 

learning, and supervised learning. The combination of the objectives of 
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these forms of data-driven machine learning gives rise to almost all 

applications of machine learning [44]. 

2.6 Neural Networks 

Neural networks are a category of algorithms engineered to identify 

patterns by mimicking the functioning of the human brain. They comprise 

interconnected layers of nodes (or neurons) that interpret input data via 

weighted connections, allowing the model to learn intricate functions. The 

neural network inspired by biological neural systems, designed for tasks 

such as pattern recognition, data classification, and prediction [45]. NNs 

exist in numerous forms and types, including shallow and deep neural 

networks. The terms "shallow" and "deep" refer to the quantity of layers in 

a neural network. Shallow neural networks possess a limited number of 

layers, generally only a single hidden layer, whereas deep neural networks 

encompass multiple hidden layers. A neural network is considered a deep 

neural network when it includes two or more hidden layers between the 

input and output layers. 

2.7 Deep Learning in Medical Diagnosis 

ML focuses on algorithms that learn patterns from data using 

manually engineered features, while DL is a subset of ML that uses multi-

layer neural networks to automatically extract features and learn complex 

representations directly from raw data without manual intervention. DL is 

regarded as an advanced kind of AI that enables computers to learn and 

make predictions without being explicitly programmed. It allows computers 

to automatically extract, analyze, and comprehend meaningful information 

from raw data [46]. The DL architecture outperforms classical approaches 
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in current scenarios, involving complicated challenges like computer vision 

and human language understanding. DL can tackle complicated issues using 

multilayer structures, making the problem-solving process faster and the 

outcomes more accurate. Multilayer is a subsampling technique used in the 

DL architecture. This makes DL extremely effective in tackling complicated 

issues [47]. DL is a technology developed from Artificial Neural Networks 

(ANN) and is considered one of the most significant advancements in 

intelligent operation. Well-known DL techniques include Multi-Layer 

Perceptron (MLP), Convolutional Neural Networks (CNN or ConvNet), and 

recurrent neural networks (long short-term memory). 

2.7.1 Multi-Layer Perceptron (MLP) 

In deep learning, a multilayer perceptron (MLP) is a name for a 

feedforward neural network consisting of fully connected neurons with 

nonlinear activation functions, organized in layers, notable for being able to 

distinguish data that is not linearly separable.  

This primary architecture of the multi-layered neural networks will 

be used for carrying out the necessary DL tasks. MLP extracts simple 

features in the first layer and feeds those simple features into the subsequent 

layers to extract more complex concepts. 

DL models have been shown to learn useful representations of raw 

data and perform well in dealing with complex engineering problems 

related to healthcare management [48].  

Figure (2.4) presents the multi-layered feed-forward neural network 

(MLP-NN), which consists of many layers. Layer 1 includes an input layer 

that matches the feature space and is followed by multiple nonlinearity 

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_separability
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layers. The final layer includes an output layer that matches the output 

space [49].  

 

Figure ‎2.4: Multi-layer perceptron (MLP-NN) [49]. 

2.7.2 Convolutional Neural Networks (CNN) 

In the field of DL, the CNN is the most famous and commonly 

employed algorithm. The main benefit of CNN compared to its 

predecessors is that it automatically identifies the relevant features without 

any human supervision [50]. CNNs have been extensively applied in a 

range of different fields, including computer vision [51], speech processing 

[52], Face Recognition [53], etc.  

The structure of CNNs was inspired by neurons in human and animal 

brains, similar to a conventional neural network. More specifically, in a 

cat’s brain, a complex sequence of cells forms the visual cortex; this 

sequence is simulated by the CNN. Goodfellow et al. [54] identified three 

key benefits of the CNN: equivalent representations, sparse interactions, 

and parameter sharing.  
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Unlike conventional fully connected (FC) networks, shared weights 

and local connections in the CNN are employed to make full use of 2D 

input-data structures like image signals.  

This operation utilizes an extremely small number of parameters, 

which both simplifies the training process and speeds up the network. This 

is the same as in the visual cortex cells. Notably, only small regions of a 

scene are sensed by these cells rather than the whole scene (i.e., these cells 

spatially extract the local correlation available in the input, like local filters 

over the input). The benefit of convolution is that it efficiently detects and 

learns spatial patterns such as edges, textures, and shapes in data by using 

small filters that scan across the input. 

A commonly used type of CNN, which is similar to the multi-layer 

perceptron (MLP), consists of numerous convolution layers preceding sub-

sampling (pooling) layers, while the ending layers are FC layers. An 

example of CNN architecture for image classification is illustrated in Figure 

(2.5).  

The CNN architecture processes images through multiple 

computational stages. First, the input images are fed into the network, 

where convolutional layers extract spatial features such as edges, textures, 

and color variations using learnable filters. Each convolution is followed by 

a max-pooling layer, which reduces the spatial dimensions and retains the 

most significant features, improving computational efficiency and 

robustness to small shifts in the image.  

After feature extraction, the resulting feature maps are flattened and 

passed into fully connected layers, which combine the extracted features to 



Chapter Two   Literature Review 

22 

 

form high-level representations. Dropout is applied to prevent overfitting by 

randomly deactivating some neurons during training. Finally, an output 

layer classify probabilities, identifying the input image as one of the classes. 

 
Figure ‎2.5: An example of CNN architecture for image classification [55]. 

2.7.2.1 CNN Layers 

Convolutional Neural Networks (CNNs) are composed of multiple 

specialized layers that work together to automatically extract hierarchical 

features from input data. Each layer type serves a distinct purpose, 

contributing to the network's ability to learn complex patterns efficiently. 

The foundational building block is the convolutional layer, which applies 

learnable filters to local regions of the input, detecting spatial patterns such 

as edges, textures, or shapes through parameter-sharing, significantly 

reducing computational complexity. Following this, pooling layers (e.g., 

max or average pooling) down sample feature maps by summarizing local 

regions, enhancing translational invariance and reducing spatial dimensions 

while retaining critical information. Non-linear activation layers, such as 

ReLU (Rectified Linear Unit), introduce sparsity and non-linearity to the 

model, enabling it to capture intricate relationships in the data. Deeper 
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architectures often incorporate normalization layers (e.g., batch 

normalization) to stabilize training by standardizing inputs to subsequent 

layers, mitigating internal covariate shift. For high-level tasks like 

classification, fully connected layers aggregate learned features into global 

representations, mapping them to output classes [56].  

The convolutional layer is the cornerstone of CNNs, responsible for 

detecting local patterns (e.g., edges, textures) through learned filters 

(kernels) [57]. 

 Operation: 

o A kernel (e.g., 3×3, 5×5) slides over the input image or feature 

map, computing the dot product between the kernel weights 

and the corresponding input region. For example, consider a 

simple (3 x 3) kernel applied to a (5 x 5) grayscale image. The 

kernel slides over the image and, at each position, multiplies its 

values element-wise with the corresponding (3 x 3) region of 

the image. The resulting nine products are then summed to 

produce a single output value, representing one pixel in the 

output feature map. This process repeats across the entire 

image, allowing the convolutional layer to detect specific local 

features such as edges or corners. 

o Mathematically, the output feature map h
k
 for the k-th kernel is 

computed as: 

ℎ𝑘 = 𝑓(𝑊𝑘 ∗ 𝑥 + 𝑏𝑘)    (2.1) 

Where W
k
 is the kernel weight matrix, x is the input, b

k
 is the bias, 

and f is the activation function. 
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 Key Concepts: 

o Stride: The step size of the kernel sliding (e.g., stride=1 shifts 

the kernel one pixel at a time). Larger strides reduce spatial 

dimensions. Using an appropriate stride helps control the 

output size and computational efficiency, allowing the network 

to balance feature detail with processing speed. 

o Padding: Adding zeros around the input to preserve spatial 

resolution (e.g., "same" padding retains input size). Padding 

preserves edge information by maintaining the original spatial 

dimensions, ensuring that features near image borders are not 

lost during convolution. 

o Sparse Connectivity: Each neuron connects only to a local 

region, reducing parameters and computational cost. 

o Weight Sharing: Kernels reuse the same weights across the 

entire input, enhancing efficiency and translation invariance. 

 Benefits: 

o Captures spatial hierarchies by learning low-level to high-level 

features. 

o Reduces parameter count compared to fully connected layers. 

The pooling layer down samples feature maps to reduce spatial 

dimensions and computational complexity while retaining critical 

information [58]. 

 Types: 

o Max Pooling: Selects the maximum value in a window 

(e.g., 2×2), emphasizing the most salient features. Max pooling 

highlights strong activations that indicate key features. 
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o Average Pooling: Computes the average value in a window, 

smoothing features. Average pooling preserves overall 

contextual information by considering all pixel contributions 

equally. 

o Global Average Pooling (GAP): Reduces each feature map to 

a single value by averaging all elements, often used before 

classification layers. 

 Purpose: 

o Invariance to small translations and distortions. 

o Reduces overfitting by lowering parameter count. 

Activation functions introduce non-linearity, enabling the network to 

model complex relationships [59]. Activation functions determine how a 

neuron’s input is transformed into output, enabling the network to capture 

relationships in the data. Without activation functions, a neural network 

would behave like a linear model, limiting it to only linear mappings 

regardless of depth. Non-linear activation functions, on the other hand, 

allow the network to learn complex patterns and interactions, making it 

capable of modeling intricate, real-world relationships. Common functions 

include: 

 ReLU (Rectified Linear Unit): 

𝑓(𝑥) = 𝑚𝑎𝑥⁡(0, 𝑥)     (2.2) 

Where:  

𝑓(𝑥): The output of the ReLU function. 

𝑥: The input value to the function 
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𝑚𝑎𝑥⁡(0, 𝑥): The function that returns the maximum value between 0 and x. 

o Advantages: Computationally efficient, mitigates vanishing 

gradient issues. 

o Variants: 

 Leaky ReLU: Allows small negative values to prevent 

"dead neurons": 

𝑓(𝑥) = { 𝑥, 𝑖𝑓 𝑥 > 0
𝑚𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (2.3) 

Where: 

𝑓(𝑥): The output of the Leaky ReLU function. 

𝑥: The input value to the function. 

𝑚: A small, constant slope for negative inputs 

 Sigmoid and Tanh: 

o Historically used but prone to vanishing gradients in deep 

networks. 

The fully connected layer aggregates high-level features for final 

predictions (e.g., classification) [60]. 

 Structure: 

o Neurons connect to all activations from the previous layer. 

o Input is flattened into a vector (e.g., from a 3D feature map). 

o Outputs class probabilities using softmax (for classification) or 

continuous values (for regression). 

 Role: 
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o Translates extracted features into interpretable outputs (e.g., 

class labels). 

2.7.2.2 Loss Functions 

Loss functions quantify prediction errors to guide parameter updates during 

training [61]: 

 Cross-Entropy Loss (for classification): 

𝐻(𝑝, 𝑦) = ∑ 𝑦𝑖⁡log⁡(𝑝𝑖)𝑖      (2.4) 

Where: 

𝑦𝑖: The true label for class 𝑖. 

𝑝𝑖: The predicted probability from the model that the input belongs to class 

𝑖. 

o Measures divergence between predicted probabilities pi and 

true labels yi. 

 Euclidean Loss (for regression): 

𝐻(𝑝, 𝑦) =
1

2𝑁
∑ (𝑝𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 ⁡    (2.5) 

Where: 

𝑁: The total number of data points in the batch or dataset. 

𝑦𝑖: The true label for class i. 

𝑝𝑖: The predicted probability from the model that the input belongs to class 

i. 

o Computes mean squared error between predictions and targets. 
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2.7.2.3 Regularization 

To prevent overfitting, CNNs employ regularization methods: 

 Dropout: Randomly deactivates neurons during training to force 

redundancy in feature learning. Dropout ensures the network does not 

rely too heavily on any single neuron, promoting more robust feature 

learning. 

 Batch Normalization: Normalizes layer outputs to zero mean and 

unit variance, stabilizing training and reducing dependency on 

initialization [62]. It improves training stability and accelerates 

convergence by reducing internal covariate shift and making the 

network less sensitive to weight initialization. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑥−𝜇

√𝜎2+𝜖
    (2.6) 

Where: 

𝜇: The mean of the values. 

𝜎2: The variance of the values. 

𝜖: (epsilon): A very small constant added for numerical stability to prevent 

division by zero. 

CNNs process data hierarchically: 

1. Early Layers: Detect edges, corners, and textures. 

2. Middle Layers: Capture complex patterns (e.g., shapes). 

3. Late Layers: Recognize high-level semantic features (e.g., object 

parts). 

4. FC Layers: Synthesize features for task-specific predictions. 
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Together, these layers enable CNNs to excel in tasks ranging from image 

recognition to medical diagnosis. 

2.7.2.4 Optimizers 

Optimizers play a critical role in minimizing the loss function by 

iteratively updating network parameters (e.g., weights, biases) through 

gradient-based learning. The learning rate, a hyper-parameter defining the 

step size for parameter updates, must be carefully chosen to balance 

convergence speed and stability.  

Below, is the outline prominent gradient-based optimization 

algorithms and their enhancements. 

Batch Gradient Descent (BGD): BGD updates parameters once per 

epoch after computing the gradient over the entire training dataset. It is 

stable and produces consistent convergence for small datasets. However, it 

requires substantial computational resources and may converge slowly or to 

local optima for large datasets (non-convex problems) [63]. 

Stochastic Gradient Descent (SGD): SGD updates parameters for 

each training sample, making it memory-efficient and faster for large 

datasets. However, frequent updates introduce noisy gradients, leading to 

unstable convergence behavior [64]. 

Mini-batch Gradient Descent: This approach divides the dataset 

into mini-batches and updates parameters after processing each batch. It 

combines the stability of BGD with the efficiency of SGD, offering steady 

convergence, reduced memory usage, and computational practicality [65]. 
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Adam Optimizer: Adam adapts learning rates for each parameter by 

combining momentum and RMSprop benefits [66]. It uses moving averages 

of gradients (𝐸[𝛿]𝑡) and squared gradients (𝐸[𝛿2]𝑡) to scale updates: 

𝑤𝑖𝑗𝑡 = 𝑤𝑖𝑗𝑡−1 −
𝜂

√𝐸[𝛿2]𝑡+𝜖
⋅ 𝐸[𝛿]𝑡     (2.7) 

Where: 

𝑤𝑖𝑗𝑡: The value of the weight parameter connecting neuron j to neuron i at 

the current timestep t. 

𝑤𝑖𝑗𝑡−1: The value of the same weight parameter at the previous timestep t-1. 

𝜂 (eta): The global learning rate, a hyperparameter that controls the overall 

step size of the update. 

𝐸[𝛿]𝑡: The bias-corrected estimate of the first moment (the mean) of the 

gradients at timestep t. It represents the moving average of past gradients. 

𝐸[𝛿2]𝑡: The bias-corrected estimate of the second moment (the uncentered 

variance) of the gradients at timestep t. It represents the moving average of 

the squares of past gradients. 

𝜖: (epsilon): A very small constant added for numerical stability to prevent 

division by zero. 

Adam is computationally efficient, robust to noisy gradients, and 

widely used for deep networks. Practical Considerations: 

 Learning Rate (η): Critical for balancing convergence and stability. 

Too high a rate causes oscillations; too low slows training. 

 Local vs. Global Minima: Momentum and adaptive methods like 

Adam mitigate local minima traps in non-convex optimization. 

 Resource Efficiency: Mini-batch GD and Adam optimize memory 

and computation, making them suitable for large-scale datasets. 
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In summary, optimizer selection depends on dataset size, 

computational resources, and the problem’s convexity. Mini-batch GD with 

enhancements like Adam often provides an effective balance of speed, 

stability, and accuracy in CNN training. 

2.7.3 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a type of neural network 

designed to process sequential data by retaining a recollection of previous 

inputs through recurrent connections. An RNN must possess a minimum of 

three hidden levels. The fundamental design of RNNs comprises input 

units, output units, and hidden units, with the hidden units executing all 

computations through weight adjustments to generate the outputs [67]. The 

RNN model features a unidirectional flow of information from the input 

units to the hidden units, along with a directional loop that evaluates the 

error of the current hidden layer against that of the preceding hidden layer, 

subsequently adjusting the weights between the hidden levels. 

 The vanishing gradient problem may occur in RNNs when gradient-

based learning techniques are employed for weight updates. Weights are 

adjusted based on the updated ratio of the partial derivative of the error 

function throughout each training iteration. In certain instances, the gradient 

may be exceedingly minimal. These erroneous signals may either escalate 

or dissipate, so inhibiting the alteration of the weight's value. The 

disappearance of erroneous signals may lead to fluctuations in the weights. 

With an elusive error, the learning process either requires an excessive 

duration or fails entirely [68]. 
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2.7.4 Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) represent a class of deep 

learning models and a type of RNN specifically designed to handle 

sequential and time-dependent data. Unlike traditional feedforward neural 

networks, LSTMs incorporate cyclical connections that enable information 

persistence across different time steps, allowing them to model dynamic 

temporal behavior. This capability makes LSTMs particularly suitable for 

applications such as speech recognition, language modeling, and time-series 

analysis.  

In the context of OM diseases classification, LSTMs can be applied 

to analyze temporal patterns in tympanometry data, where pressure and 

compliance readings vary over time during the measurement process. The 

standard RNNs face challenges such as vanishing and exploding gradients 

during training, limiting their ability to capture long-term dependencies. On 

the other hand, LSTMs designed to model sequential data by mitigating 

vanishing gradient issues through gated memory cells. LSTMs maintain and 

update an internal cell state via input, output, and forget gates, enabling 

them to capture long-range dependencies in time-series data [69].  

In the context of tympanometric time-series, LSTMs can model 

dynamic pressure-compliance curves over the duration of the test, offering a 

powerful approach to real-time OM diagnosis. A popular choice for 

forecasting are Long Short-Term Memory (LSTM) cells.  

Since LSTMs incorporate memory units that explicitly allow the 

network to learn when to "forget" previous hidden states and when to 

update hidden states given new information, they have been utilized 
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effectively for sequences or temporally based data [70]. The LSTM 

architecture is shown in Figure (2.6). The C𝑡 is unit memory, X𝑡 is the input, 

and 𝑃𝑡 is the output. The⁡𝐹𝑡,⁡𝑖𝑡, and 𝑜𝑡 are the weight matrices. 

 

Figure ‎2.6: Long Short-term Memory Neural Network [70]. 

 

The LSTM unit is composed of a cell state and three regulatory gates [71]: 

1. Forget Gate: Decides which information to discard from the cell 

state by outputting values between 0 (forget) and 1 (retain). 

𝑓(𝑡) = ⁡𝜎⁡(𝑊𝑓⁡𝑥
(𝑡) +⁡𝑅𝑓⁡𝑦

(𝑡−1) +⁡𝑝𝑓 ⋅ ⁡ 𝑐
(𝑡−1) +⁡𝑏𝑓)   (2.8) 

  Where: 

The symbol (⋅) is the point-wise multiplication of two vectors.  

  𝑥(𝑡): The current input. 

  𝑦(𝑡−1): The output of the LSTM in the last iteration. 

  𝑐(𝑡−1): The cell value of the LSTM in the last iteration. 
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  𝑊𝑓 ,𝑅𝑓, 𝑝𝑓: The weights associated with 𝑥(𝑡), 𝑦(𝑡−1), 𝑐(𝑡−1). 

  𝑏𝑓: The bias vector. 

2. Input Gate: Determines which new information to store in the cell 

state. It uses a sigmoid activation function to filter inputs and a 

hyperbolic tangent (tanh) function to transform values into a range of 

[-1, 1]. 

𝑖(𝑡) = ⁡𝜎⁡(𝑊𝑖 ⁡𝑥
(𝑡) +⁡𝑅𝑖 ⁡𝑦

(𝑡−1) +⁡𝑝𝑖 ⋅ ⁡ 𝑐
(𝑡−1) +⁡𝑏𝑖)⁡  (2.9) 

  Where:  

  The symbol (⋅) is the point-wise multiplication of two vectors.  

  𝑥(𝑡): The current input. 

  𝑦(𝑡−1): The output of the LSTM in the last iteration. 

  𝑐(𝑡−1): The cell value of the LSTM in the last iteration. 

  𝑊𝑖 ,𝑅𝑖, 𝑝𝑖: The weights associated with 𝑥(𝑡), 𝑦(𝑡−1), 𝑐(𝑡−1). 

  𝑏𝑖: The bias vector. 

3. Output Gate: Controls which parts of the cell state are exposed as 

the hidden state for the next time step, again using sigmoid and Tanh 

functions. 

𝑜(𝑡) = ⁡𝜎⁡(𝑊𝑜⁡𝑥
(𝑡) +⁡𝑅𝑜⁡𝑦

(𝑡−1) +⁡𝑝𝑜 ⋅ ⁡ 𝑐
(𝑡−1) +⁡𝑏𝑜)           (2.10) 

  Where: 

The symbol (⋅) is the point-wise multiplication of two vectors.  
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  𝑥(𝑡): The current input. 

  𝑦(𝑡−1): The output of the LSTM in the last iteration. 

  𝑐(𝑡−1): The cell value of the LSTM in the last iteration. 

  𝑊𝑜 ,𝑅𝑜, 𝑝𝑜: The weights associated with 𝑥(𝑡), 𝑦(𝑡−1), 𝑐(𝑡−1). 

  𝑏𝑜: The bias vector. 

For example, assume the following inputs: the current input 𝑥(𝑡) = [0.6], 

the previous output 𝑦(𝑡−1) = [0.4], the previous cell value 𝑐(𝑡−1) = [0.5], 

and the weights 𝑊𝑓 = [0.8], 𝑅𝑓 = [0.4], 𝑝𝑓 = [0.2], 𝑏𝑓 = [0.1], 𝑊𝑖 =

[0.7], 𝑅𝑖 = [0.3], 𝑝𝑖 = [0.1], 𝑏𝑖 = [0.05], 𝑊𝑜 = [0.5], 𝑅𝑜 = [0.4], 

𝑝𝑜 = [0.2], 𝑏𝑜 = [0.1]. 

The forget gate determines which portion of the previous cell value 

should be retained:⁡𝑓(𝑡) = ⁡𝜎⁡(0.8 × 0.6 + 0.4 × 0.4 + 0.2 × 0.5 + 0.1) ≈

0.73. Thus, approximately 73% of the previous memory is preserved. The 

input gate regulates how much new information enters the cell value: 

𝑖(𝑡) = ⁡𝜎⁡(0.7 × 0.6 + 0.3 × 0.4 + 0.1 × 0.5 + 0.05) ≈ 0.69. The output 

gate determines the hidden state for this time step: 𝑜(𝑡) = ⁡𝜎⁡(0.5 × 0.6 +

0.4 × 0.4 + 0.2 × 0.5 + 0.1) ≈ 0.68. These computed gate activations 

demonstrate how the LSTM selectively controls the flow of information at 

each time step. By balancing the retention of relevant past information 

through the forget gate, the integration of new input through the input gate, 

and the generation of the current hidden state through the output gate, the 

LSTM effectively maintains temporal dependencies within sequential data. 
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2.8 Artificial Intelligence in Healthcare 

AI can enable healthcare systems to achieve their quadruple aim by 

democratising and standardising a future of connected and AI augmented 

care, precision diagnostics, precision therapeutics and, ultimately, precision 

medicine [72]. Research in the application of AI healthcare continues to 

accelerate rapidly, with potential use cases being demonstrated across the 

healthcare sector (both physical and mental health) including drug 

discovery, virtual clinical consultation, disease diagnosis, prognosis, 

medication management and health monitoring. 

AI today (and in the near future): Currently, AI systems are not 

reasoning engines, which means they cannot reason the same way as human 

physicians, who can draw upon common sense or clinical intuition and 

experience [73]. Instead, AI resembles a signal translator, translating 

patterns from datasets. AI systems today are beginning to be adopted by 

healthcare organisations to automate time consuming, high volume 

repetitive tasks. Moreover, there is considerable progress in demonstrating 

the use of AI in precision diagnostics (diabetic retinopathy and radiotherapy 

planning).  

AI in the medium term (the next 5–10 years): In the medium term, AI 

will be significant progress in the development of powerful algorithms that 

are efficient (require less data to train), able to use unlabelled data, and can 

combine disparate structured and unstructured data including imaging, 

electronic health data, multi-omic, behavioural and pharmacological data. 

In addition, healthcare organisations and medical practices will evolve from 

being adopters of AI platforms, to becoming co-innovators with technology 

partners in the development of novel AI systems for precision therapeutics.  
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AI in the long term (>10 years): In the long term, AI systems will 

become more intelligent, enabling AI healthcare systems achieve a state of 

precision medicine through AI-augmented healthcare and connected care. 

Healthcare will shift from the traditional one-size-fits-all form of medicine 

to a preventative, personalized, data-driven disease management model that 

achieves improved patient outcomes (improved patient and clinical 

experiences of care) in a more costeffective delivery system. 

2.9 Swarm Intelligence (SI) 

The swarm intelligence (SI) algorithm is a simulation technique 

designed to replicate biological collective intelligence. The inherent 

parallelism and distributed nature of SI algorithms facilitate the resolution 

of intricate nonlinear problems, exhibiting advanced attributes of self-

adaptability, resilience, and search efficacy. To date, numerous optimization 

techniques inspired by swarm intelligence exist, including conventional 

particle swarm optimization (PSO) and ant colony optimization (ACO). In 

recent years, other advancements have emerged, including the artificial bee 

colony (ABC), bacterial foraging algorithm (BFO), and butterfly 

optimization algorithm (BOA) [74].  

SI algorithms seek the optimal solution with heuristic information. It 

is applicable to a diverse range of optimization challenges, including 

dynamic optimization issues, multi-objective optimization problems, and 

NP problems. The continuous advancement of IoT demonstrates significant 

potential for SI in IoT-related applications. The SI algorithms were 

developed to examine how basic individuals can generate sophisticated and 

intricate swarm optimization behaviors via cooperation, organization, 

information exchange, and learning within a swarm [75]. 
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2.10 Artificial Bee Colony (ABC) 

Swarm Intelligence (SI) denotes a collective computational 

methodology inspired by the decentralized, self-organizing behaviors 

observed in natural systems.  In SI, basic agents engage locally with each 

other and their surroundings, resulting in the formation of sophisticated, 

intelligent global behavior without centralized oversight.  This paradigm 

has been extensively utilized in optimization problems, where collaboration 

among agents facilitates effective exploration and exploitation of the 

solution space. Optimization algorithms use a technique to find the best 

solution in a space of candidate solutions. Since its inspiration by Dervis 

Karaboga in 2005 [76], the artificial bee colony (ABC) algorithm has been 

considered a cornerstone in SI. The ABC algorithm mimics the behavior of 

foraging honeybees, consisting of three categories: employed bees, 

onlookers, and scouts.  

The algorithm governs the exploration and exploitation processes, 

defining the search engine as globally optimal in a search landscape [77]. 

The Artificial Bee Colony (ABC) algorithm adopts a population-based 

approach for optimization as shown in Figure (2.7), the process commences 

with the random initialization of a population of bees solutions (employed 

bees). For each bee, a function called the fitness function is applied to each 

bee solution to get a value, which serves as the fitness value. The fitness 

function is a function to evaluate the solutions. The population is 

subsequently partitioned into two primary groups based on fitness: high-

performing bees and low-performing bees. The high-performing bees are 

further divided using the average of fitness values of its bees for 

distinguishing between elite bees and moderate bees.  
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Figure ‎2.7: Artificial bee colony steps. 

Increasing the number of colonies in the ABC algorithm enhances 

exploration of the search space and improves the likelihood of finding the 

global optimum, but it also increases computational cost and processing 

time. Both elite and moderate bees are subjected to a neighborhood 
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exploration procedure (onlooker bees), wherein new bee solutions are 

generated for each bee within a defined neighborhood range, thus 

facilitating local exploitation of promising regions in the search space. 

The number of neighborhood explorations allocated to elite bees is 

higher than the number of neighborhood explorations allocated to moderate 

bees, favoring the elite bees with a more intense local search. In contrast, 

the low-performing bees undergo complete replacement via random 

generation of new bee solutions (scout bees) to encourage global 

exploration and maintain population diversity. 

The newly generated bees, moderate bees, and elite bees are merged 

and then sorted according to their fitness values. This iterative process of 

partitioning, neighborhood exploitation, random regeneration, merging, and 

sorting is repeated across a predefined number of iterations.  

Throughout the iterations, the algorithm continuously monitors and 

records the best bee solution discovered thus far, ensuring that when the 

iterations are ended, the best bee solution represents the optimal solution. 

2.11 Evaluation Performance 

To assess a predictive model's performance, it is essential to employ 

rigorous metrics that comprehensively analyze its effectiveness. This 

section outlines the primary metrics utilized to evaluate the model's 

classification performance: accuracy, precision, recall, and F1-score [78, 

79]. The employed evaluation metrics comprise:  

1. Accuracy measures the overall correctness of predictions as 

demonstrated by equation 2.11. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2.11) 

2. Precision indicates how often the model correctly identifies OME 

when predicted as demonstrated by equation 2.12.  

⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2.12) 

3. Recall evaluates the model’s ability to detect actual OME cases, 

reducing false negatives as demonstrated by equation 2.13.  

⁡𝑅𝑒𝑐𝑎𝑙𝑙 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2.13) 

4. F1-score balances precision and recall, providing a comprehensive 

measure of classification performance as demonstrated by equation 

2.14. 

⁡𝐹1⁡𝑆𝑐𝑜𝑟𝑒 = ⁡2⁡ ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡×⁡𝑅𝑒𝑐𝑎𝑙𝑙⁡

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙
  (2.14) 

Where: 

TP = True Positives 

TN = True Negatives 

FP = False Positives 

FN = False Negatives 

In a binary classification problem, the confusion matrix is a 2×2 table 

that summarizes the model’s performance by comparing predicted and 

actual outcomes, containing four key elements: true positives, true 

negatives, false positives, and false negatives [80]. It provides a clear 

understanding of how well the model distinguishes between the two classes, 

allowing for the computation of key metrics such as accuracy, precision, 
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recall, and F1-score. When extended to multi-class classification, the 

confusion matrix becomes a 𝑛 × ⁡𝑛 table, where (n) represents the number 

of classes. Each row corresponds to the actual class, and each column 

represents the predicted class, enabling a detailed analysis of 

misclassifications across multiple categories [81]. This multi-class 

confusion matrix helps identify which specific classes are frequently 

confused, offering deeper insights into model weaknesses and guiding 

improvements in training and feature extraction. 

2.12  Software Tools 

The programming language utilized to apply and test the various 

deep learning models is Python, which is considered an elegant and high-

level programming language. Its popularity within scientific computing and 

machine learning stems from its readability and expansive ecosystem. 

Python’s features can be supplemented with a number of libraries which 

simplify the handling of data, model creation, and the evaluation of models.  

For numerical operations and data handling, Python libraries NumPy 

and Pandas are used and data visualization is performed using Matplotlib 

and Seaborn. Model construction and training is performed in TensorFlow 

and Keras, which are sophisticated tools for training deep neural networks.  

The code was run in Google Colaboratory (Colab), a cloud-based 

interactive platform that provides a mounted drive for files, GPU-enabled 

Python environment and real-time collaboration with other users. Colab 

integrates seamlessly with Google Drive which streamlines access to 

datasets as well as collaborative code writing. 
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2.13  Literature Review 

AI encompasses algorithmic frameworks that mimic human cognition 

to automate complex tasks. In OM, AI-driven analysis leverages otoscopic 

images, tympanometry, and acoustic signals to distinguish normal and 

pathological states.  

Choi et al. (2022) constructed a multi-class CNN using EfficientNet-

B4 that classifies primary middle-ear disorders (OME, COM, normal) and 

secondary findings (attic cholesteatoma, meningitis, tube insertion, 

otomycosis) with an accuracy of 95.32% for primary classes [82]. 

Sundgaard et al. (2022) developed a CNN for detecting otitis media based 

on wide-band tympanometry using 1,014 measurements, obtaining 92.6% 

accuracy, explaining model decisions with saliency maps [83].  

Sundgaard et al. (2021) conducted a comparative study on five loss 

functions the used for OM classification, determining that deep metric 

(triplet) loss yielded the highest precision for AOM detection while 

maintaining an adequate recall [84]. In order to differentiate CSOM, 

cholesteatoma, and normal anatomy, Wang et al. (2022) [85] developed two 

deep learning networks (CNN with VGG16), a classification model, and an 

Region Of Interest (ROI) localization model, on 973 CT-scanned ears. In 

examining CNN-based OM screening, Sandström et al. (2022) utilized 

digitized otoscopic images that had been expertly labeled, dividing the 347 

images into three screening categories [86].  

Mehedi et al. (2025) implemented Fuzzy Restricted Boltzmann 

Machine (FRBM) for the classification of infections involving the eardrum 

and ear canal [87]. Crowson et al. (2023) performed an evaluation of a 
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pediatric middle-ear deep learning algorithm against clinician practitioners 

for myringotomy/tube-indication diagnostic comparisons [88]. Cha et al. 

(2019) developed an ensemble model consisting of Inception-V3 and 

ResNet101 to classify six categories of ear diseases [89]. Başaran, Cömert, 

and Çelik (2020) developed a Faster R-CNN based detector for the 

tympanic membranes and evaluated it against a set of noise conditions 

using different pre-trained models [90].  

Wu et al. (2021) aimed for home-based screening of AOM, OME, 

and normal ears employing Xception and MobileNet-V2 with transfer 

learning on 12,203 pediatric otoscopic images, supplemented by 102 

images obtained via smartphone [91].  

While some works fuse ML and DL methods, others combine 

multiple modalities of a single diagnostic type, such as imaging. The 

combination of the random forest analysis of tympanometry data and 

otoscopy image Inception-ResNet-v2 predictions gave accuracy of 84.9% 

when they applied the majority voting technique (Binol et al., 2020) [92]. 

Çalışkan (2022) [93] combined VGG16 with Support Vector Machine 

(SVM) to classify tympanometry images into normal and abnormal classes 

using a dataset of 956 images, having an accuracy of 82.17%.  

Akyol et al. (2025) [94] constructed an ensemble with soft voting 

from several pretrained CNNs on otoscopy images, noting an accuracy of 

98.8%, sensitivity of 97.5%, and specificity of 99.1%. Lee et al. (2025) [95] 

noted that with EfficientNet-B7 backbones, the fulfilling of classification 

and regression tasks for TM diseases and hearing loss in children surpassed 

93.59% accuracy.  
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Myburgh et al. (2016) [96] trained a decision tree algorithm on high 

quality preprocessed images of eardrums taken with digital video of 

otoscopes, which then uses predetermined indicators to categorize images 

that are not diagnosed into five OM groups. Images taken on-site with a 

cheap, custom-made video-otoscope had an accuracy of 78.7%. The dataset 

includes otoscopy images different cases of tympanic membrane where the 

authors removed 73 images due to insufficient image quality. 

Ting et al. (2023) [97] developed and verified OME detection with 

the aid of in-ear microphones and a machine learning model. Two 

commercial microphones were inserted into each ear canal to record the 

sound produced by participants as they continuously uttered five three-

vowel vowels. Table (2.1) presents a comparison of literature using AI 

algorithms for the diagnosis of otitis media. 

Table ‎2.1: Comparison of literature in diagnosing otitis media. 

Ref. / 

Year 

Diagnose 

Method 

Dataset Size of 

Dataset 

Types of 

Categories 

Models Main 

Results 

[82] 

2022 

Otoscopy 

Images 

Images from 

otologic clinic in 

Asan Medical 

Center (Private)  

1,630  OME, 

COM, None 

EfficientNet

-B4 

 Accuracy 

95.32%  

[83] 

2022 

Tympano

metry 

Images from 

Kamide ENT 

clinic, Japan 

(Private) 

1014  OME, AOM CNN  Accuracy 

92.6% 

Recall 

92.2% 

F1-Score 

92.6% 
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[84] 

2021 

Otoscopy 

Images 

Images from 

Kamide ENT 

clinic, Japan 

(Private) 

1336  AOM, 

OME, and 

No Effusion 

Deep neural 

network 

learning 

Accuracy 

85% 

[85] 

2022 

CT images Images  from 

Xiangya 

Hospital 

(Private) 

973  Middle Ear 

Cholesteato

ma (MEC), 

CSOM, 

Normal 

CNN  with 

VGG-16  

F1-score: 

87.2% 

Precision: 

90.1% 

Recall: 

85.4% 

[86] 

2022 

Otoscopy 

Images 

Images from 

New York, USA 

(Public) 

347  Normal, 

Pathological

, Wax 

CNN Accuracy: 

90% 

[87] 

2025 

Otoscopy 

Images 

dataset of ear 

images from 

Saudi Arabia 

(Private) 

200 Infected vs. 

not infected 

FRBM Accuracy: 

98.65% 

[88] 

2023 

Otoscopy 

Images 

Images  from  

Massachusetts 

General 

Brigham 

(Private) 

639    Normal, 

OME, AOM 

Neural 

network  

Accuracy 

80.8% 

[89] 

2019 

Otoscopy 

Images 

Images from 

Severance 

Hospital 

(Private) 

10,544  Tympanic 

perforation, 

Attic 

retraction, 

Otitis 

externa ± 

Inception-

V3 and 

ResNet101 

accuracy 

93.67% 
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myringitis, 

Tumor, 

Normal 

[90] 

2020 

Otoscopy 

Images 

Images from 

Hospital in 

Turkey between 

10/2018 and 

1/2019. (Public) 

282   Normal and 

Abnormal 

 R-CNN, 

AlexNet, 

VGGNets, 

GoogLeNet, 

and 

ResNets 

high 

Accuracy: 

90.48% 

for VGG-

16 

[91] 

2021 

Otoscopy 

images  

Images  from 

India (Private) 

12,203  AOM, 

OME, 

Normal 

Xception 

MobileNet-

V2 

Accuracy: 

95.72% 

[92] 

2020 

Tympano

metry and 

Otoscopy 

videos 

Dataset from  

Ohio State 

University 

(OSU) and 

Nationwide 

Children’s 

Hospital 

(Private) 

73  Normal vs. 

Abnormal 

Random 

forest , 

Inception-

ResNet-v2  

Accuracy: 

84.9% 

[93] 

2022 

Tympano

metry 

Images from 

Hospital in 

Turkey (Private) 

956  Normal vs. 

Abnormal 

VGG16 + 

SVM 

Accuracy 

82.17%. 

sensitivity 

71.43%, 

specificity

90.62%  

f-score 

77.92%  
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[94] 

2025 

Otoscopy 

Images 

Images from the 

Clinical 

Hospital of 

Universidad de 

Chile (Public) 

880  Normal, 

Earwax 

plug, 

Myringoscl

erosis, 

COM 

Deep 

learning-

based 

ensemble 

method  

Accuracy: 

98.8%, 

Sensitivity 

97.5%, 

Specificit

y 99.1% 

[95] 

2025 

Otoscopy 

Images 

 Images from 

Soonchunhyang 

University 

Hospital (Public) 

757  normal, 

COM, 

AOM, and 

otitis 

externa 

EfficientNet 

B7 model 

using MLP 

and drop 

connect 

Accuracy: 

93.59%  

sensitivity 

87.19%, 

specificity 

95.73%. 

[96] 

2016 

Digital 

video-

otoscopes 

Various video-

otoscopes from 

Pretoria, South 

Africa (Private) 

562  CSOM, 

O/W, TM, 

OME, AOM 

Decision 

Tree 

Accuracy: 

78.7% 

[97] 

2023 

microphon

es with 

vowel 

sound 

recordings 

Japan at Taipei 

Veterans 

General 

Hospital (Nov 

2020 – Aug 

2021) (Private) 

62  OME, 

Normal 

SVM, 

Naive 

Bayes, 

AdaBoost, 

Random 

Forest, and 

CNN 

Accuracy 

for CNN: 

80.65% 

  

2.14 Research Gaps 

A review of the existing literature reveals that most studies in Otitis 

Media diagnostic have focused on visual or acoustic data, such as studies 

(Esteva et al., 2021; Wu et al., 2021). While models that combine image and 
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tympanometry-derived features further improved diagnostic performance 

(Binol et al., 2020; Akyol et al., 2025), but these methods still rely on 

processed or transformed data rather than raw device outputs. Although 

there have been studies that have analyzed tympanometry data using 

derived features or images, raw output from devices has not been used 

directly in AI models. The raw outputs from tympanometry devices, such as 

compliance, pressure, gradient, etc., can be immediately entered into the AI 

model.  By doing this, the AI can discern the pattern, which aids in 

mitigating the bias wherein the raw outputs are less complex than images or 

audio. To address limitations in previous studies, a new collection of 

tympanogram types instead of image- and audio-based approaches, the 

proposed method overcomes the lack of real-world datasets. 
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3 Chapter Three 

Research Methodology 

3.1 Introduction 

In this chapter, the proposed methodology is explained which include 

all necessary algorithms and illustrations. The methodology starts with data 

collecting and concludes with assessing the results. 

3.2 Research Methodology 

The research methodology is shown in Figure (3.1). Initially, the data 

collection and preprocessing phase. The second phase data splitting divided 

into training, validation, and testing, class imbalance is addressed for the 

training set. The third phase, the model building and training phase, the 

Artificial Bee Colony (ABC) algorithm is utilized to determine the optimal 

learning rate and the optimal activation function for the LSTM model. 

Multiple independent colonies operate in parallel, each initialized with a 

unique set of candidate learning rates and activation functions.  

The best-performing solution from each colony is used to train the 

final LSTM model. Finally, the resulted model, that trained using the 

optimal learning rate and the optimal activation function is subjected to a 

thorough evaluation using a set of pre-defined performance metrics, 

including accuracy, precision, recall, and F1-score. These metrics provide a 

multidimensional assessment of model performance, ensuring a 

comprehensive understanding of the classifier's predictive capability. In 

realm of SI, a variety of superior algorithms have been developed, including 

the firefly algorithm (FA), genetic algorithm (GA), differential evolution 
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(DE), and particle swarm optimization (PSO). These strategies demonstrate 

strong efficacy in addressing optimization difficulties. In comparison to 

other algorithms, ABC possesses a straightforward structure, fewer control 

parameters, and enhanced search capabilities. Consequently, it has been 

extensively examined by numerous experts and employed to address 

various complicated issues.  

 

Figure ‎3.1: The Study Methodology. 
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LSTM is typically designed for sequential or temporal data, but they 

are also effective in modeling relationships between dependent features 

when those features exhibit ordered or correlated patterns — as in 

tympanometry data. The tympanometry data contain pressure, gradient, and 

compliance values that vary across a continuous range and have functional 

dependencies similar to time-series behavior. The following sections will 

detail the steps of the proposed methodology for the study. 

3.3 Data Collection and Preprocessing 

This section offers a detailed examination of the dataset collection, 

organization, visualization, and preprocessing methods employed for OM 

diseases classification. The initial section outlines the methodology for 

collecting tympanometry data from medical clinics in Iraq and provides 

visual interpretations of the dataset. The second portion provides 

preprocessing steps that are applied on the dataset. 

3.3.1 Data Collection 

This thesis focuses on addressing the issue of categorizing OM 

diseases based on tympanometry. The criterion is established to determine 

the dataset that will be utilized in the thesis. A comprehensive database 

from 892 patients at various medical centers in Iraq, including hospitals and 

hearing service centers as shown in Table (3.1), which contains four 

diseases and one health condition. The dataset includes two formats 

tympanometry tests: graphical images and electronic APX format. There are 

278 images for graphical images, where some images have more than one 

tympanometry test, and there are 614 tympanometry tests as electronic 

APX. 
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Table ‎3.1: Sources from which tympanometry tests were collected. 

Name Location Image/APX  

Tikrit Teaching Hospital Salah al-Din, Iraq 46 

Al-Jamhuri Hospital Nineveh Governorate 15 

Puretone Hearing Services 

Center 

Baghdad Governorate - Al-

Harithiya 

614 

The First Center for 

Hearing Services 

Mosul - Al-Masarif 

neighborhood 

150 

Al Rahaf Center for 

Hearing Services 

Salah al-Din Governorate - 

Tikrit 

67 

 

The graphical data were obtained directly from the medical facility in 

image format, while the APX format were retrieved and visualized using the 

Amplisuite V2.1 tool, a Windows-based desktop software intended for 

audiological data handling. Two types of format made up the combined 

dataset, called the tymp-OM dataset conains 1,808, where a sample of two 

formats of tympanometry tests employed in this dataset is shown in Figure 

(3.2). An extraction of six clinical and demographic attributes was applied 

from each tympanometry test: Age, Ear (left or right), Pressure (daPa), 

Gradient (daPa), ECV (ml), and Compliance (ml).  

Each ear (left or right) in the tympanometry tests, where in the 

images or APX formats, was dealt with as an independent sample, because 

there was no statistical relationship between each ear for the same patient. 

Each image or APX format contains tympanometry data for the left and 

right ears. In simple calculation there are (278 + 614) x 2 = 1784 samples. 

For the image format, as mentioned lastly, there are 12 images that have 

two tympanometry tests for the same patient, so the total samples are (12 x 

2) + 1784 = 1808 samples. 
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(a) 

 
(b) 

Figure ‎3.2: The two formats of tympanometry test for different patients, 

where (a) is the graphical image and (b) is the electronic APX. 

3.3.2 Data Preprocessing  

Efficient data preprocessing is a critical step in building an effective 

and generalizable deep learning model. In this stage, some critical 

preprocessing methods in the classification of the tympanometry dataset 

were carried out. These operations involved, as shown in Figure (3.3), 

labeling, transforming categorical data into numerical data, and feature 

standardizing.  
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Figure ‎3.3: Preprocessing steps. 

3.3.2.1 Labeling 

The dataset was initially examined for missing values, and none were 

found. Each sample was reviewed and classified by an otolaryngologist (Dr. 

Mona Jassim Mohammed) using the Jerger system, resulting in a final 

dataset of 1,808 labeled records  categorized into five tympanogram types, 

one healthy (A) and four diseases (As, Ad, B, and C), as illustrated in 

Figure (3.4). The Age, Ear, Pressure, Gradient, ECV, and Compliance 

columns are the features and the Type column is the target. 

Figure (3.5) presents a horizontal bar chart depicting the distribution 

of the Type column in the final dataset. The primary classification of the 

samples was Type A (n = 1196), indicating normal middle ear function. This 

was followed by Type As (n = 254), signifying reduced compliance often 

associated with rigidity in the middle ear system. Type Ad (n = 170) 

indicates markedly increased compliance, often linked to ossicular chain 

discontinuity or tympanic membrane hypermobility.  

 

Labeling 

Categorical 
Encoding 

Feature 
Standardiz

ation 
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Figure ‎3.4: An example of the dataset. 

 

Figure ‎3.5: Distribution of column Type. 

Type C (n = 106) signifies negative middle ear pressure, indicative of 

Eustachian tube dysfunction. Figure (3.6) depicts the distribution of middle 

ear pressure among the five tympanogram categories using a scatter plot. 

Every type of tympanogram has distinct pressure characteristics that 

correspond with clinical anticipations.  
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Type A tympanograms, indicative of normal middle ear function, 

display pressure values centered around 0 daPa, defined by a narrow 

distribution. Type Ad and Type As tympanograms exhibit pressures near 

atmospheric levels, however with slightly more variability. Conversely, 

Type C exhibits a notable shift towards negative pressures, frequently 

descending below -100 daPa, signifying Eustachian tube dysfunction.  

Type B tympanograms exhibit a broad and uneven range of pressure 

values. This image highlights the importance of pressure measurements in 

tympanogram categorization and demonstrates the diagnostic heterogeneity 

within the dataset. 

 

Figure ‎3.6: Scatter plot for pressure and Type columns. 

3.3.2.2 Categorical Encoding 

Initially, categorical variables were converted into numerical format 

to facilitate deep learning model training. The Type column was encoded as 

follows: A=0, Ad=1, As=2, B=3, and C=4. Similarly, the Ear column was 
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transformed by assigning 0 to L (left) and 1 to R (right). This encoding 

enabled the models to process these features effectively. 

3.3.2.3 Feature Standardization 

To normalize the numerical features and enhance model convergence, 

StandardScaler was applied. This method adjusts the features to have a 

mean of zero and a standard deviation of one. Standardization is particularly 

important for AI models, as it ensures that all input features contribute 

equally during model optimization. Without standardization, features with 

large numeric values (like pressure or gradient) would dominate model 

learning, while smaller-scale features (like compliance) would have little 

influence. 

3.4 Dataset Splitting  

As shown in Figure (3.7), the dataset was divided into training 

(64%), validation (16%), and testing (20%) subsets to support robust model 

evaluation. The train and validation subsets are used in the training process, 

where train data is responsible for training the LSTM model after the ABC 

algorithm generated a random learning rate and a random activation 

function. The validation data is used to assess the LSTM model after 

training by calculating the validation accuracy. The model that had the best 

validation accuracy found is considered the final trained LSTM model. The 

test data used to assess the final model by calculating the accuracy, 

precision, recall, and F1 score. The training dataset exhibited an issue of 

class imbalance. The representation of the training data was balanced via 

the Synthetic Minority Over-sampling Technique (SMOTE) to address this 

issue.  
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Figure ‎3.7: Dataset splitting phase 

 

SMOTE works by selecting a minority sample, finding its nearest 

neighbors, and creating new samples along the line segments connecting 

them. The rationale for implementing SMOTE subsequent to 

standardization is to guarantee that SMOTE for all characteristics 

contributes uniformly in the generation of synthetic samples. As SMOTE 

generates new data points through interpolation of existing samples, 

disparate feature sizes might skew distance computations and yield 

implausible synthetic data. Standardizing the data initially ensures that each 

feature is translated to a uniform scale, enabling SMOTE to produce more 

balanced and significant synthetic samples that accurately represent the 

underlying structure of the data. The dataset splitting led to 3324 samples 

for training, 832 samples for validation, and 1040 samples for testing. 

3.5 Model Creation and Training 

This section describes the process of designing and training the 

classification model for OM diseases based on tympanometry data. The 

approach integrates a LSTM with the ABC optimization algorithm to 

enhance model performance. 

Dataset 

Training 

Training 
64% 

Validation 
16% Testing 

20% 
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The classification task was organized as a multiclass problem five 

classes, each representing one of the five types of tympanograms. After 

many experimental tests, the LSTM was built with these layers: the input 

from the tymp-OM dataset are first passed through the LSTM layer, which 

consists of 64 units designed to capture patterns inherent in the data. The 

output from the LSTM layer is then forwarded to a Dense layer with 32 

units, where higher-level feature abstraction begins. This is followed by a 

subsequent Dense layer with 16 units that further refines the representation. 

Finally, the output is passed to the last Dense layer containing 5 neurons 

with a softmax activation function. 

The model computes the sparse categorical cross-entropy loss 

between the predicted probabilities and the true class labels, and the 

backpropagation algorithm adjusts the weights throughout the network 

using gradients calculated via the Adam optimizer. This process is repeated 

iteratively for 50 epochs to minimize the loss and improve classification 

accuracy. 

Table (3.2) and Table (3.3) show the hyperparameters of ABC and the 

hyperparameter values that ABC will find the best values for LSTM, 

respectively. In this work, the ABC algorithm is employed to optimize the 

hyperparameters of LSTM model (learning rate and activation function). 

The learning rate is an important hyperparameter in neural network training 

because it determines the step size in updating weights. Activation functions 

control the nonlinear nature of information flow within the network. These 

two hyperparameters were chosen to reduce computational complexity. 

However, if all hyperparameters were included, the search would be very 

large. Therefore, focusing on these two hyperparameters quickly yields 



Chapter Three   Research Methodology 

61 

 

tangible results. The approach simulates the collective foraging behavior of 

honey bee colonies to effectively balance exploration and exploitation 

during the search process. 

Four independent colonies are executed in parallel, each initialized 

with a random population of 10 candidate learning rates, 10 candidate 

activation functions, and with a number of iterations of 5. The fitness 

function used is a LSTM model where the fitness value is the validation 

accuracy after the LSTM model trains on the training dataset using a 

candidate of learning rate and activation function.  

Table ‎3.2: The hyperparameters of ABC algorithm. 

Name Values 

Number of Colonies Working in 

Parallel 

4 

Population of learning rates and 

activation functions 

10 for each 

ABC iterations 5 

Number of Generated Bees for Elite 

(N2) 

3 

Number of Generated Bees for 

Moderate (N1) 

2 

Neighbourhood Value (N) 0.01 

Middle location of bee population 

(M) 

10 

Fitness Function Validation Accuracy 

 

Table ‎3.3: The hyperparameter values that ABC finds for an LSTM. 

Name Values 

Learning Rate [0.0001, 0.1] 

Activation Function (relu, linear, leaky_relu, tanh) 
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Within each colony, the search process iteratively partitions the 

population based on fitness. The top-performing half of the population 

undergoes a secondary partitioning based on the average fitness to 

distinguish elite and moderate candidates. Elite candidates are subjected to 

a more intensive local search, generating multiple new learning rates within 

a defined neighborhood range and multiple new activation functions, while 

moderate candidates undergo a less intensive local search. Meanwhile, the 

lower-performing half of the population is entirely replaced by newly 

generated random candidates to maintain diversity and avoid premature 

convergence.  

After each round of exploitation and exploration, all candidates are 

merged and sorted according to their updated fitness, and the best solution 

is continuously tracked across iterations.  

This iterative process is repeated for a predefined number of cycles, 

with the parallel execution of multiple colonies further enhancing the global 

search capability and robustness of the optimization process. The steps of 

the approach, as illustrated in Figure (3.8), represent the stages of hybrid 

methods, which integrated LSTM with ABC. The output of these steps is a 

trained LSTM having the best learning rate and activation function. 

1. Initialization Phase: 

 Randomly generate an initial population (bees) of learning rates in 

range of [0.0001, 0.1] and activation functions in four types (relu, 

linear, leaky_relu, tanh). 

 Train the LSTM model using each learning rate and activation 

function. 
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 Evaluate each model on a validation dataset and record the 

accuracy (fitness values). 

2. Population Partitioning: 

 Sort all learning rate and activation function solutions based on 

validation accuracy. 

 Divide the population into two groups: 

 High-performing bees (top M bees, where M is the 

centre location of the list resulted from the initialization 

phase). 

 Low-performing bees (remaining bees). 

3. Secondary Partitioning of High-performing Bees: 

 Compute the average validation accuracy of the high-

performing bees. 

 Split high-performing bees into: 

 Elite bees (above-average accuracy). 

 Moderate bees (below-average accuracy) 

4. Neighborhood Search (Exploitation): 

 Parameters used are: 

 Neighbourhood value (N): It defines the range of each learning 

rate solution within which new learning rate solutions are 

generated during the local search process. The range is in 

shape [LR - N, LR + N] where N = 0.01 is the Neighbourhood 

value and LR is the learning rate that responsible to generate 

new solutions. 
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 N2: It specifies the number of new learning rates and new 

activation functions to generate performed for each in elite 

bees during exploitation. 

 N1: It specifies the number of new learning rates and new 

activation functions to generate performed for each in 

moderate bees during exploitation, where the N2 > N1 

 For each bee in the elite bees, generate N2 = 3 learning rates 

within the neighbourhood range and N2 = 3 activation 

functions. 

 For each bee in the moderate bees, generate N1 = 2 learning 

rates within the neighbourhood range and N1 = 2 activation 

functions. 

5. New Random Generation (Exploration): 

 Completely replace the low-performing bees with new 

randomly generated bees (learning rates in range of [0.0001, 

0.1] and activation functions in the types of relu, linear, 

leaky_relu, or tanh) to encourage exploration. 

6. Merging and Sorting: 

 Merge elite bees, moderate bees, and newly generated bees. 

 Sort the entire population based on validation accuracy. 

7. Iteration Control: 

 Repeat steps 2–6 for a predefined number of iterations. 

8. Best Solution Tracking: 

 Continuously update and record the best-performing bee that 

get the best validation accuracy across all iterations. 
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Figure ‎3.8: steps of combine ABC and LSTM  

The advantage of using ABC with LSTM is that it is more intelligent 

for exploration and exploitation, yielding better results than using random 

values or manually tuning hyperparameters. The reason for choosing this 

range of values for the learning rate and activation function in the 

initialization phase is to explore the widest possible range of learning rate 

values and the most commonly used activation functions in neural 

networks. 

3.6 Model Evaluation 

After concluding up the work technique, the suggested model's 

performance evaluation is presented. This thesis evaluates the proposed 

system based on a variety of standard metrics such as accuracy, precision, 

recall, and F1 were covered in detail in Chapter Two. 
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4 Chapter Four 

Results and Discussion 

4.1 Introduction 

 This chapter presents the experimental and evaluation results of 

different deep learning models for the classification of OM diseases. At 

first, the thesis displays the result of the proposed model (ABC-LSTM) 

performance. The experimental findings for several methods, such MLP, 

CNN, LSTM, ABC-MLP, and ABC-CNN on (Tymp-OM) dataset are shown 

in section (4.3). Section (4.4) displays the comparison the proposed model 

(ABC-LSTM) with MLP, CNN, LSTM, ABC-MLP, and ABC-CNN. In 

section (4.5) the suggested method ABC-LSTM is also compare with 

previous works for classification OM diseases.  

4.2 Results Analysis of Proposed Model 

After the ABC ended its iterations, the Colony ID = 4 had the trained 

LSTM with the optimal learning rate and optimal activation function.  

This configuration yielded a learning rate of 0.0991, with the best 

activation function being ReLU. The outcome of this configuration yielded 

a validation accuracy of 96.15%. The training process's performance is 

illustrated in Figure (4.1), displaying the trends of training loss and training 

accuracy over 50 epochs, respectively.  

The initial training loss is elevated, but it experiences a significant 

decline in the early epochs. The decline persists gradually, ultimately 

reaching a stable low value. The ongoing decrease in loss demonstrates the 
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model's capacity to efficiently reduce error and enhance prediction accuracy 

as time progresses.  

Simultaneously, the training accuracy demonstrates a steady rise 

across the epochs. The model demonstrates significant enhancement in the 

early stages of training and continues to show consistent advancement. The 

observed increase in accuracy, along with the declining loss curve, suggests 

robust model convergence and consistent learning stability. 

 

Figure ‎4.1: Training plot for accuracy and loss for the ABC-LSTM. 

The model underwent evaluation on the independent test dataset to 

determine its generalization capability. The model demonstrated an 

impressive overall accuracy of 95.96% on the test set, reflecting robust 

predictive capabilities. The precision stood at 96.11%. The recall achieved 

was 96.32%. The F1-score reached 96.16%, indicating reliable performance 

across imbalanced classes. The training and testing accuracies of the ABC-

LSTM model are very close. This small difference indicates that the model 
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generalizes well to unseen data and does not exhibit overfitting, suggesting 

that the ABC optimization successfully tuned the learning rate and 

activation function to balance model complexity and generalization. Figure 

(4.2) shows the confusion matrix of ABC-LSTM. The confusion matrix 

shows that most errors occur between class A (normal) and class As 

(otosclerosis).  

 

Figure ‎4.2: The confusion matrix of ABC-LSTM. 

This is expected because these two tympanogram types have similar 

pressure distributions and peak shapes. In clinical terms, As is a slightly 

flattened version of A, so the extracted numerical features, like pressure, 

overlap in range. As a result, the model occasionally confuses borderline 

cases where the tympanogram curve exhibits mild stiffness but still retains 

near-normal pressure behavior. This reflects the real diagnostic challenge 
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even for human specialists. The proposed model (ABC-LSTM) performs 

well, with most predictions correctly aligned along the diagonal. 

4.3 Experimental Results of Other Techniques 

    The section focuses on the performance of various deep learning 

architectures (MLP, CNN, and LSTM), and ABC optimization with MLP 

and CNN.  

4.3.1 MLP Results 

In Table (4.1) illustrates the hyperparameters used of 4-layer MLP 

architecture. SGD and Adam were used because they are the most widely 

used optimizers in neural networks. For SGD with the using of the learning 

rate of 0.09, a batch size of 32, and training over 50 epochs, the model 

achieved test accuracy of 95.77%, precision of 95.86%, recall of 95.99%, 

and F1-score of 95.92%. while, MLP with Adam achieved test accuracy of 

95.48%, precision of 95.57%, recall of 95.72%, and F1-score of 95.63%  by 

using a learning rate of 0.05, a batch size of 32, and training over 50 

epochs. 

The performance disparity between SGD and Adam in the MLP 

outcomes is negligible. This minor enhancement of SGD can be ascribed to 

its stable convergence characteristics, which may have aligned more well 

with the data distribution compared to Adam's adaptive updates. 

Nonetheless, considering the minimal disparity and the overall convergence 

resemblance, the difference signifies ordinary random fluctuation rather 

than a significant performance superiority. The confusion matrix of MLP 

with SGD and MLP with Adam are shown in appendix. The loss and 

accuracy curves for training and validation of the MLP with SGD and MLP 



Chapter Four   Results and Discussion 

70 

 

with Adam are illustrated in Figure (4.3). The loss decrease sharply during 

the initial epochs and gradually converge.  

Table ‎4.1: Configurations of MLP.  

Name Values / Details 

Loss Function Sparse Categorical Cross-Entropy 

Optimizers SGD (momentum = 0.9), Adam 

Learning Rates 0.09, 0.05 

Epochs 50 

Batch Sizes 32 

Learning Rate Decay Multiply by 0.9 each epoch 

4-Layer MLP 

1. Dense (64 units, ReLU),  

2. Dropout (rate = 0.2),  

3. Dense (32 units, ReLU),  

4. Dense (5 units, Softmax) 

 

  

      (a) SGD                                                                   (b) Adam 

Figure ‎4.3: The training and validation plot for accuracy and loss for the 

MLP. 

4.3.2 CNN Results 

The Table (4.2) illustrates the hyperparameters used of 6-layer CNN 

architecture with training over 150 epochs. The CNN that used SGD 

achieved test accuracy of 76.06% by using a learning rate of 0.09, a batch 

size of 32, the model achieved precision of 76.74%, recall of 77.01%, and 
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F1-score of 76.69%. The CNN that used Adam achieved test accuracy of 

76.92% by using a learning rate of 0.01, a batch size of 16. The model 

achieved precision of 77.22%, recall of 77.89%, and F1-score of 77.36.  

Table ‎4.2: Configurations of CNN. 

Name Values / Details 

Loss Function Sparse Categorical Cross-Entropy 

Optimizers SGD (momentum = 0.9), Adam 

Learning Rates 0.09, 0.01 

Epochs 150 

Batch Sizes 32, 16 

Learning Rate Decay Multiply by 0.9 each epoch 

6-Layer CNN 1. Conv1D (32 filters, ReLU) 

2. MaxPooling1D (2 pool_size) 

3. Conv1D (16 filters, ReLU) 

4. Flatten() 

5. Dense (64 units, ReLU) 

6. Dense (5 units, Softmax) 

 

The low CNN accuracy in SGD and Adam may be due to a learning 

rate, which, using this learning rate, likely caused unstable weight updates, 

preventing proper convergence. The explanation for Adam's better results 

than SGD is that Adam adapts to the characteristics of the data and 

gradients during training.  

The confusion matrix of CNN with SGD and CNN with Adam are 

shown in the appendix. The loss and accuracy curves for training and 

validation of the CNN with SGD and CNN with Adam models are 

illustrated in Figure (4.4). The loss decrease sharply during the first epochs. 

The loss and accuracy curves stabilize around epochs 50, indicating that the 

models have reached their maximum learning ability. 
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      (a) SGD                                                                   (b) Adam 

Figure ‎4.4: The training and validation plots for accuracy and loss for the 

CNN. 

4.3.3 LSTM Results 

The Table (4.3) introduces the hyperparameters used of 3-layer 

LSTM architecture with training over 100 epochs. The LSTM that used 

SGD achieved test accuracy of 95.77% by using a learning rate of 0.09, a 

batch size of 16.The model achieved precision of 95.92%, recall of 96.16%, 

and F1-score of 95.97%. The LSTM that used Adam achieved test accuracy 

of 95.77% by a learning rate of 0.05, a batch size of 32. The model 

achieved precision of 95.91%, recall of 96.09%, and F1-score of 95.98%. 

The confusion matrix of LSTM with SGD Adam are shown in appendix. 

The loss and accuracy curves for training and validation of the LSTM with 

SGD and LSTM with Adam models are illustrated in Figure (4.5). The loss 

and accuracy curves over the course of 100 training epochs.  

The loss decreases sharply during the initial epochs and gradually 

converges in LSTM with SGD, while the validation loss in LSTM with 

Adam has increases in the last epochs, which means there is an overfitting. 

The rise in validation loss post-epoch 20 using the Adam optimizer signifies 

the commencement of overfitting, as the model enhances performance on 
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training data but deteriorates in generalization to unseen data. This 

transpires when Adam aggressively adjusts learning rates, facilitating swift 

convergence while simultaneously increasing the risk of overfitting. Early 

stopping can be utilized to terminate training when validation loss ceases to 

improve. The low training loss and a high validation loss are typical 

relationships for overlearning where the model memorizes the training data. 

Table ‎4.3: Configurations of LSTM. 

Name Values / Details 

Loss Function Sparse Categorical Cross-Entropy 

Optimizers SGD (momentum = 0.9), Adam 

Learning Rates 0.09, 0.05 

Epochs 100 

Batch Sizes 16, 32 

Learning Rate Decay Multiply by 0.9 each epoch 

3-Layer LSTM 1. LSTM (64 units, ReLU) 

2. Dense (32 units, ReLU) 

3. Dense (5 units, Softmax) 

 

 

      (a) SGD                                                                   (b) Adam 

Figure ‎4.5: The training and validation plots for accuracy and loss for the 

LSTM. 
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4.3.4 ABC-MLP Results 

The trained MLP model, utilizing the optimal learning rate and 

activation function identified through the ABC optimization algorithm, 

demonstrated its peak performance in Colony ID = 1, achieving a learning 

rate of 0.03925 and employing the ReLU activation function. The 

configuration achieved a validation accuracy of 94.71%, showcasing the 

efficacy of the ABC algorithm in optimizing hyperparameters for deep 

learning applications.  

The training process's performance is illustrated in Figure (4.6), showcasing 

the trends of training loss and training accuracy over 50 epochs, 

respectively. 

 

Figure ‎4.6: Training plots for accuracy and loss for the ABC-MLP. 

The initial training loss is elevated, followed by a significant decline 

in the early epochs. The decline persists gradually, ultimately reaching a 

stable low value. The ongoing decrease in loss demonstrates the model's 

proficiency in minimizing error and enhancing prediction accuracy as time 

progresses. 
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Simultaneously, the training accuracy demonstrates a steady rise 

across the epochs. The model demonstrates significant enhancement in the 

early stages of training and continues to show consistent advancement. The 

increase in accuracy alongside the declining loss curve suggests robust 

model convergence and consistent learning stability. 

Following the training phase, the ABC-MLP was evaluated on the 

independent test dataset to assess its generalization ability. The model 

achieved an overall accuracy of 95.48% on the test set, indicating strong 

predictive performance. The model achieved precision of 95.57%, recall of 

95.82%, and F1-score of 95.66%. The confusion matrix of ABC-MLP is 

shown in appendix. 

Although ABC has not shown significant superiority in terms of 

performance indicators, its real value lies in automating the process of 

selecting hyperparameters, which reduces the need for lengthy manual 

experimentation and saves effort and time in building models. Therefore, 

ABC is a complement to MLP in improving tuning, rather than a means of 

achieving a quantum leap in performance accuracy. 

4.3.5 ABC-CNN Results 

The trained CNN model using the optimal learning rate and optimal 

activation function found by the ABC optimization algorithm achieved its 

highest performance in Colony ID = 2, which produced the best learning 

rate of 0.01349 and best activation function is ReLU. This configuration 

resulted in a validation accuracy of 93.99%, demonstrating the effectiveness 

of the ABC algorithm in fine-tuning hyperparameters for deep learning 

tasks. The performance of the training process is depicted in Figure (4.7), 
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which illustrate the training loss and training accuracy trends over 50 

epochs, respectively. The training loss starts at a high value and sharply 

decreases during the early epochs. It then continues to decline gradually, 

eventually stabilizing at a low value.  

This consistent reduction in loss reflects the model’s ability to 

effectively minimize error and improve prediction accuracy over time. In 

parallel, training accuracy shows a continuous increase in throughout the 

epochs.  

The model exhibits rapid improvement during the initial training 

phase and maintains steady progress. This upward trend in accuracy, 

coupled with the decreasing loss curve, indicates strong model convergence 

and learning stability. 

 

Figure ‎4.7: Training plots for accuracy and loss for the ABC-CNN. 

Following the training phase, the ABC-CNN was evaluated on the 

independent test dataset to assess its generalization ability. The model 

achieved an overall accuracy of 94.23% on the test set, indicating strong 

predictive performance. The model achieved precision of 94.54%, recall of 
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94.79%, and F1-score of 94.46%. The confusion matrix of ABC-CNN is 

shown in Appendix section. 

After reviewing the ABC-CNN results, the importance of ABC lies in 

increasing the accuracy of CNN. Without ABC, the accuracy and results of 

CNN showed poor results. However, ABC worked on finding the best 

hyperparameters, especially the learning rate, to greatly improve the results. 

4.4 Comparison ABC-LSTM vs Other Techniques     

Table (4.4) presents the comparison classification of the proposed 

model (ABC-LSTM) with MLP, CNN, LSTM—trained using two different 

optimization algorithms: SGD and Adam and the against the performance of 

ABC-MLP, ABC-CNN using different measures. The MLP model achieved 

its highest accuracy of 95.77% when trained with SGD, slightly 

outperforming the Adam optimizer, which yielded 95.48%. In contrast, the 

CNN model showed lower performance overall, reaching 76.06% accuracy 

with SGD and a marginally higher 76.92% with Adam. 

Table ‎4.4: Comparison results between ABC-LSTM with other techniques 

Model Accuracy Precision Recall F1-Score Training 

Time 

MLP with 

SGD 

95.77 % 95.86% 95.99% 95.92% 25 

Second 

MLP with 

Adam 

95.48 % 95.57% 95.72% 95.63% 30 

Second 

CNN with 

SGD 

76.06 % 76.74% 77.01% 76.69% 92 

Second 

CNN with 

Adam 

76.92 % 77.22% 77.89% 77.36% 94 

Second 

LSTM with 95.77 % 95.92% 96.16% 95.97% 90 
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SGD Second 

LSTM with 

Adam 

95.77 % 95.91% 96.09% 95.98% 84 

Second 

ABC-MLP 95.48 % 95.57% 95.82% 95.66% 4418 

Second 

ABC-CNN 94.23 % 94.54% 94.79% 94.46% 6640 

Second 

Proposed 

model ABC-

LSTM 

95.96 % 96.11% 96.32% 96.16% 5724 

Second 

 

The LSTM model demonz2102strated strong and consistent 

performance, achieving 95.77% accuracy with both optimizers. The ABC-

MLP and ABC-CNN models achieved an accuracy of 95.48 % and 94.23%, 

respectively. Meanwhile, the ABC-LSTM model reached the highest 

accuracy of 95.96%, outperforming all other default models, ABC-MLP, 

and the ABC-CNN. This is indicating the effectiveness of the ABC 

algorithm in tuning deep learning models. In addition, this comparison 

demonstrates that integrating swarm intelligence, such as ABC, into the 

training process can enhance model performance, particularly for recurrent 

architectures like LSTM.  

ABC did not markedly enhance MLP performance, as MLP models 

exhibit reduced sensitivity to minor hyperparameter fluctuations due to their 

simplistic structure and absence of intricate interconnections.  

Consequently, ABC optimization has little capacity for additional 

performance improvement.  Conversely, models such as CNN and LSTM 

encompass a greater number of hyperparameters and non-linear 

interactions, rendering them more amenable to ABC’s optimization method, 

which can more effectively fine-tune learning rates and activation functions 
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for these intricate architectures. It can be concluded that using ABC is more 

time-consuming and computationally complex due to the large search 

operations required to obtain the best hyperparameters for each model. 

4.5 Comparison with Previous Studies 

Table (4.5) offers a comparative analysis for the proposed ABC-

LSTM model using the Tymp-OM dataset of 5196 samples and 5 classes 

with previously published studies on tympanometry classification. The 

proposed model achieved a markedly higher accuracy of 95.96%, 

outperforming all prior approaches in the literature. For instance, studies 

such as Sundgaard et al. (2022) [83] and Binol et al. (2020) [92], which 

employed CNN and ensemble methods, used a dataset of 1014 images (2 

classes) and 73 videos (2 classes), respectively, and reported accuracies of 

92.6% and 84.9%, respectively. The VGG16 model by Çalışkan (2022) 

[93], which used 956 images (2 classes), reached 82.17%, still significantly 

below the proposed model’s performance. From the results, the proposed 

model (ABC-LSTM) in our study achieved better results when comparing 

with previous studies.  

Table ‎4.5: Comparison the proposed ABC-LSTM with previous studies. 

Paper Model No. of 

classes 

Dataset Size Metrics 

[83] CNN 2 1014 images Accuracy: 92.6% 

F1-Score: 92.6% 

[92] Majority voting 2 73 videos Accuracy: 84.9% 

[93] VGG16 2 956 images  Accuracy: 82.17% 

F1-Score: 77.92% 

This 

study 

ABC-LSTM 5 5196 records Accuracy: 95.96% 

F1-Score: 96.16% 
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5 Chapter Five 

Conclusion and Future Works 

5.1 Introduction 

This chapter encapsulates the research findings of the thesis and 

delineates the prospective avenues for further inquiry in this domain. 

Section (5.2) examines the benefits of the thesis; the research findings are 

delineated in Section (5.3), and future work are shown in Section (5.4). 

5.2 Research Benefit 

This thesis offers significant contributions to both the medical and 

computational fields by presenting a reliable classification for OM diseases 

based on tympanometry data to help in the diagnosis of OM. The thesis 

bridges the gap between accessible healthcare and advanced diagnostic 

tools by enabling accurate classification of OM diseases using deep learning 

model.  

By achieving high classification accuracy, particularly with 

lightweight architecture by using low number of layers for the LSTM, the 

methodology is well-suited for deployment in low-resource or non-

specialist environments, such as rural clinics or primary care settings. 

Furthermore, the novel dataset and the methodology establish a foundation 

for future research and development in medical AI for OM. 

5.3 Conclusion 

This thesis set out to address the critical need for an accessible, 

reliable, and automated method to classify OM diseases to help in 



Chapter Five   Conclusion and Future Works 

81 

 

diagnosing OM, particularly in non-specialist and resource-limited clinical 

settings. By leveraging deep learning models, the ABC optimization 

algorithm, and a novel dataset of 1,808 tympanometric readings with 5 

classes from 892 patients, this thesis demonstrated the efficacy of a ABC-

LSTM based classification model using tabular tympanometric data.  

Preprocessing techniques were applied on the final dataset ( name of 

data and size), comprising categorical encoding, standardization, and class 

balancing. The proposed methodology introduced a hybrid method of 

LSTM with ABC algorithm to identify the optimal learning rate and optimal 

activation function, addressing a key challenge in deep learning model 

optimization.  

The proposed ABC-LSTM achieved strong convergence behavior 

and high accuracy (95.96%) on test data, with performance metrics such as 

precision, recall, and F1-score further confirming the model’s robustness 

and ability to generalize across all five tympanogram classes.  

The results show the extent and strength of the proposed model 

(ABC-LSTM) with the ability to classify OM diseases. The proposed 

methodology exhibited robust performance; yet, some restrictions must be 

recognized.  

The dataset, while clinically significant, is moderate in size (1,808 

records), perhaps constraining the model's exposure to uncommon 

tympanogram patterns and marginally hindering generalization. Although 

preprocessing and SMOTE enhanced data balance, augmenting the dataset 

with a broader array of clinical cases would bolster robustness. 
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5.4 Future work 

Future research can extend this work in several promising directions: 

 Increasing the numbers of test samples will enable the evaluation of a 

higher number of tympanometry data with good results and good 

performance. 

 Deploying the proposed model as a mobile application or a web 

browser to increase its use by ordinary users. 

 Developing the proposed method to make it a powerful tool for 

classifying the largest possible number of categories. 

 Implement the suggested model to any extra local datasets.
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 الخلاصة

يتميز التهاب الأذن الوسطى بالتهاب وتراكم السوائل في المنطقة خلف طبلة الأذن، والتي تحتوي 

على العظام الصغيرة المسؤولة عن السمع. يعُد التهاب الأذن الوسطى أحد الأسباب الرئيسية لضعف 

يعُد التشخيص الدقيق لالتهاب الأذن الوسطى أمرًا بالغ الأهمية في المجال الطبي، إلا  السمع عالمياً.

أن تشخيصه في الرعاية الصحية الأولية يعُيقه نقص المعدات والخبرة المتخصصة، واختلاف 

ا تفسيرات الأطباء، والتشخيصات الخاطئة. في الآونة الأخيرة، تقُدم تقنيات التعلم العميق نهجًا عمليً 

على طريقة تصنيف  الرسالةلأتمتة تصنيف الأمراض في التهاب الأذن الوسطى. ترُكز هذه 

أمراض التهاب الأذن الوسطى بناءً على بيانات قياس طبلة الأذن. تتكون بيانات قياس طبلة الأذن 

 .الوسطى من منحنيات الضغط والامتثال التي تمُثل وظيفة الأذن الوسطى

تتكون الطريقة المقترحة من أربع مراحل: جمع مجموعة بيانات جديدة من خمسة مراكز سريرية لـ 

مريضًا، ومعالجة البيانات مسبقاً، وتقسيم مجموعة البيانات، وإنشاء النموذج وتدريبه، وبعد  892

لنحل نموذجًا جديداً يجمع بين خوارزمية مستعمرة ا الرسالةذلك مرحلة التقييم. تقُدمّ هذه 

لتحسين المعاملات الفائقة  (ABC-LSTM) الاصطناعي والذاكرة طويلة المدى قصيرة المدى

من أمراض الأذن الوسطى. يستطيع النموذج المُقترح  (A, B, C, Ad, As) لتصنيف خمس فئات

 ، وتحسين معاملاتها الفائقة بفضل خوارزمية LSTMالتعامل مع البيانات الزمنية بفضل خوارزمية

ABC، مما يجعله مناسباً جداً لتصنيف أمراض الأذن الوسطى باستخدام بيانات قياس طبلة الأذن. 

%، 95.96( تقارباً قوياً أثناء التدريب، وحقق دقةً بلغت ABC-LSTMأظهر النموذج المُقترح )

% في مجموعة بيانات 96.16بلغت  F%، ودرجة 96.32%، وتذكرًا بلغ 96.11ودقةً بلغت 

الاختبار. بالإضافة إلى ذلك، تفوق النموذج بشكل ملحوظ على جميع النماذج الأخرى في التجارب 

التي أجُريت على مجموعة متنوعة من المقاييس لمجموعة البيانات الجديدة، بالإضافة إلى الأعمال 

لتطبيق لأمراض التهاب الأذن الوسطى بناءً المنشورة سابقاً. تشير هذه النتائج إلى تصنيف قابل ل

على بيانات قياس طبلة الأذن للمساعدة في تصنيف التهاب الأذن الوسطى، والمساهمة في 

التخصصات الطبية والحسابية، وتظهر اتفاقاً مماثلاً مع الأطباء المتخصصين في تشخيص التهاب 

 الأذن الوسطى في المراحل المبكرة.
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