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Abstract

Otitis media (OM) is typified by inflammation and accumulation of fluid in
the region beyond the eardrum and contains the little bones that are
involved in hearing. OM is a leading cause of hearing impairment globally.
Accurate diagnosis of OM is a critical in medical field, but its diagnosis in
primary care is hindered by limited equipment and specialist expertise,
variations in clinicians’ interpretations, and misdiagnoses. In the recent
times, deep learning techniques offer a feasible approach for automating the
classification of diseases in OM. This thesis focuses on the classification
method for OM diseases based on tympanometry data. Tympanometry data

consist of pressure and compliance curves representing middle ear function.

The proposed method consists of four phases: collecting a new dataset from
five clinical centers for 892 patients and data preprocessing, dataset
splitting, model creation and training, after that the evaluation phase. This
thesis introduces a new model that combines Artificial Bee Colony
algorithm with Long Short-Term Memory (ABC-LSTM) to optimize
hyperparameters for classifying five classes ( A, B, C, Ad, As) of OM
diseases. The proposed model can deal with the temporal data because of
LSTM and optimize LSTM’s hyperparameter because of the ABC
algorithm, which makes the proposed model very suitable to classify OM

diseases using tympanometry data.

The proposed model (ABC-LSTM) demonstrated robust convergence
during training and achieved an accuracy of 95.96%, precision of 96.11%,
recall of 96.32%, and F-score of 96.16% on the test dataset. In addition, it

significantly outperformed all other models in the conducted experiments
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on a variety of metrics for the newly dataset, as well as the previously
published works. These results indicate a viable categorization for OM
diseases based on tympanometry data to aid classification OM, contributing
to medical and computational disciplines, and show comparable agreement

to subspecialist doctors in diagnosis OM in early stages.
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Chapter One Introduction

Chapter One

Introduction and Research Background

1.1 Introduction

This chapter provides an overview of the research direction, specifies
the problem statement, and describes the rationale for undertaking this
study to attain its goals. Section (1.2) presents a brief background on the
research topic, offering context and highlighting key developments. Section
(1.3) defines the research problem, emphasizing the existing challenges and
gaps in knowledge. Section (1.4) outlines the research objectives, detailing
the specific goals this study aims to accomplish. Section (1.5) highlights the
scope of this study. Finally, Section (1.6) shows the organization of the

thesis. Together, these sections establish a clear foundation for the thesis.

1.2 Background of the Study

Hearing is one of our most important senses. It is fundamental to
building relationships and for humans to communicate verbally with
friends, families, and peers [1]. Children learn to speak through hearing
sounds. Therefore, hearing impairments can interfere with a child’s speech
and language development and increase their risk of additional disabilities,
which i1s any condition that increases the difficulty of participating in
certain activities or effectively interacting with the world around them.
Prompt detection, diagnosis, and intervention are essential for the effective
treatment of hearing loss to prevent adverse impacts on sleep, psychosocial
well-being, interpersonal communications, school readiness, and speech and

language development in children [2].
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The human ear is divided into three parts: the outer ear, the middle
ear, and the inner ear, as illustrated in Figure (1.1). The eardrum (tympanic
membrane - TM) is a thin, cone-shaped membrane that divides the exterior
and middle ears [3]. The middle ear anatomy is made up of three little
bones (malleus, incus, and stapes) that transfer sound waves to the inner ear.
The middle ear also has a Eustachian canal, which connects it to the nose.
This tube aids in the equalization of air pressure in the middle ear, which is

required for optimal sound transmission.

Temporal muscle  Temporal bone

Semicircular canals

Vestibular nerve

: " External acoustic meatus
(Ear canal)

Tringular fossa

Antihelix

‘- ) Cartilage Tympanic membrane Tympanic
(Eardrum) cavity
\ Eustachian tube
Auricular lobule
(Earlobe) \
Outer Ear Middle Ear Inner Ear

Figure 1.1: The outer ear, middle ear, and inner ear of the human ear [4].
The outer ear comprises the auricle (pinna), which collects sound
waves and directs them into the ear canal for amplification. The sound
waves subsequently strike the eardrum, inducing vibrations. The vibrations
in the middle ear are amplified and conveyed by three small ossicles—the

malleus, incus, and stapes—through the oval window to the inner ear.
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Amplification in the middle ear primarily arises from two mechanisms. The
primary contribution arises from the disparity in size between the area of
the eardrum and the stapes footplate that connects to the oval window. The
eardrum encompasses an area of roughly 55 mm?, whereas the surface area
of the stapes footplate is approximately 3.2 mm? [5]. External sound waves
in the ear canal apply force to the larger surface area of the eardrum,
subsequently concentrating this energy onto the smaller surface area of the
stapes footplate, so generating significantly higher pressure at that location.
The secondary amplification mechanism arises from the lever-like function

of the ossicular chain.

As the malleus is longer than the incus, it traverses a greater distance;
nonetheless, the incus exerts higher force, so amplifying the pressure
conveyed by the stapes faceplate to the oval window. The Eustachian tube
regulates air pressure equilibrium by linking the middle ear to the
pharyngeal cavity [6]. In the inner ear, vibrations traverse the fluid-filled
cochlea, stimulating nerve cells that transmute the vibrations into electrical
messages. The impulses are subsequently transmitted to the brain for
auditory processing. The inner ear houses the vestibular system, which is

essential for balance maintenance.

Middle ear disease (MED) refers to a group of conditions that affect
the middle ear, such as trauma or inflammation, leading to disturbances of
normal middle ear function [7]. It encompasses a wide range of disease-
causing conditions, the most common being otitis media (OM), arising from
bacterial or viral causes [8]. Other MEDs include ecustachian tube

dysfunction (ETD), cholesteatoma, and fungal infections.
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OM is a common childhood condition, where the Global Burden of
Disease (GBD) study indicates that the incidence of Otitis Media (OM)
among children rose by 40,940,535 from 1990 to 2021. This underscores
the significance of addressing OM in children as a pivotal strategy for
alleviating the burden of noncommunicable diseases within this
demographic [9]. with a bimodal prevalence, where the first and most
prominent peak occurs in children around two years old and the second
peak around five years old [10]. OM can be associated with colds, as
otopathogens that typically reside in the nasopharynx can ascend the

eustachian tube to the middle ear, manifesting into OM.

The clinician may use an otoscope and a tympanometry test to
diagnose otitis media. An otoscope is a medical equipment that commonly
used to inspect the auditory canal for conditions such as cerumen impaction
and acute otitis media [11]. Tympanometry is an acoustic test that evaluates
eardrum vibration in response to varying air pressures within the ear canal
[12], as shown in Figure (1.2). It is widely used to detect middle ear
effusion with high accuracy but can be challenging to perform on children
because it requires them to stay still. During the test, a tympanometer
equipped with a microphone alters the air pressure while emitting a low-
pitched tone—typically 226 Hz, though other frequencies may be used
when needed. The device records the eardrum’s movement, and the results
are displayed on a tympanogram, reflecting the ear’s pressure—mobility
relationship. Artificial intelligence (AI) is revolutionizing healthcare by
improving diagnostic accuracy, treatment planning, and patient outcomes

[13]. Deep learning (DL) models, in particular, have shown significant
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potential in analyzing complex medical data, enabling faster and more

precise disease detection [14].

TYMPANOMETRY

Audien Hearing

Figure 1.2: Tympanometry [15].

In the case of Otitis, DL-based classification systems can assist in
distinguishing different types of the condition with high accuracy, reducing
misdiagnosis and improving treatment strategies. By leveraging advanced
Al techniques, healthcare professionals can make more informed decisions,
leading to better patient care [16]. Therefore, this thesis introduces a
method capable of classifying Otitis media problems, and to reduce human

errors in diagnosis, relying on ABC-LSTM model.

1.3 Problem Statement

Otitis Media, a prevalent ear condition, requires precise identification
of its different types to facilitate appropriate treatment and management. An
effective diagnosis of middle-ear diseases has the potential to prevent
hearing loss and antibiotic resistance. In low- and middle-income nations, at
least half of otitis media cases cause hearing loss if left untreated, middle-
ear diseases can lead to a variety of consequences, including balance issues,

meningitis, and brain abscess [17]. Middle-ear problems are diagnosed with
5
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tympanometry and otscopy testing. Tympanometry is the better devices for
accurate diagnosis for OM [18]. However, the diagnose remains difficult for
many audiologists because of the lack of experience of medical staff on
how to use the device properly, this made to misdiagnosis if results are not
interpreted correctly [19]. In addition, this device may be unavailable in
nursing homes for the elderly [20], where AI can provide portable,
smartphone-based tympanometry systems that autonomously evaluate
eardrum responses, enabling precise remote assessments in nursing homes.
In addition, the children cannot respond reliably to standard hearing tests
due to excessive movement or fear. Therefore, accurate diagnosis of OM
remains a real challenge due to the reliance on physicians' expertise and the
difficulty of using current equipment. Hence, the need to develop an
intelligent system capable of analyzing medical data or images to improve

the accuracy and speed of diagnosis and reduce the possibility of error.

1.4 Research Objectives

The primary objective of this thesis is to classifying OM diseases
based on tympanometry data to help the doctors in diagnosis. The sub-

objectives of this thesis are:

= To create a new tympanometry dataset (tymp-OM) collected from
various medical centers in Irag, which contains five categories: one
healthy and four diseases. The dataset have two formats:
tympanograph image and electronic APX.

= To optimize the performance of an LSTM-based deep learning model
for tympanometry classification using Artificial Bee Colony (ABC)

algorithm for hyperparameter tuning.
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= To assess the effectiveness of the proposed model in OM diagnosis

using standard classification measures.

1.5 Research Scope

The research scope in this thesis revolves around several points, they

are as follow:

1. This thesis classify OM diseases (one healthy and four diseases)
based on Tympanometry data.

2. The dataset is private which obtained from various medical clinic in
Iraq (Tikrit, Musol, and Baghdad).

3. Using LSTM + ABC Algorithm.

1.6 Outline of the Thesis

This thesis is organized, including this chapter, as outlined below:

Chapter Two: contains the main OM disease, artificial intelligence, deep
learning, the techniques utilized in this thesis will be discussed in this
chapter. Also, reviews existing studies on Otitis Media diagnosis using
artificial intelligence methods, and identifies research gaps addressed in this

thesis.

Chapter Three: details the methodology adopted in the research, including
dataset collection, data preprocessing, model development, and evaluation.
It explains the design and optimization of the Long Short-Term Memory
(LSTM) model using the Artificial Bee Colony (ABC) algorithm.

Chapter Four: presents the experimental results obtained from training and

evaluating the proposed model. It analyzes performance metrics such as
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accuracy, precision, recall, and Fl-score, discussing the findings in

comparison with existing methods.

Chapter Five: presents the benefit and summarizes conclusion of the
thesis. In addition, concludes suggestion directions for future investigations

in  Al-based tympanometry classification and OM diagnosis.
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Chapter Two

Literature Review

2.1 Introduction

This chapter delineates the theoretical underpinnings essential for
comprehending the suggested intelligent diagnostic methodology for Otitis
Media (OM). It commences by elucidating the physiological and
pathological principles pertaining to the middle ear, encompassing prevalent
conditions that influence auditory systems. The following sections delineate
tympanometry as a diagnostic method, detailing its concepts, measuring
parameters, and clinical relevance. The chapter then presents the
fundamental ideas of AI, Machine Learning (ML), and Deep Learning
(DL), highlighting their significance in medical diagnosis and data-
informed decision-making. This chapter concentrates on advanced neural
architectures, including Convolutional Neural Networks (CNN), Multi-
Layer Perceptrons (MLP), and Long Short-Term Memory (LSTM) models.
The chapter finishes with a summary of optimization algorithms, evaluation
metrics, and software tools, providing a thorough theoretical foundation for

the forthcoming research methodology and experimental design.

2.2 Overview of Otitis Media

Otitis Media (OM) diseases is a type of infectious disease caused by
viruses and/or bacteria in the middle ear cavity. OM is a common and
potentially serious condition characterized by inflammation or infection of
the middle ear [21]. It is particularly prevalent among children and

represents a major cause of hearing impairment in developing countries.
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The condition manifests in various forms, such as Acute Otitis Media
(AOM), Otitis Media with Effusion (OME), and Chronic Otitis Media
(COM), each with distinct pathological features and clinical implications

[22].

Acute otitis media (AOM) is a condition in which fluid and mucus

accumulate inside the middle ear, resulting in ear pain, fever, or

temporary hearing loss. It grows swiftly, resulting in swelling and

redness [21].

e Otitis medium with effusion (OME): Fluid and mucus continue to
accumulate after the beginning of AOM.

e Chronic otitis media (COM) is characterized by the presence of fluids
in the middle ear for extended periods of time without an infection.
While this condition usually not cause serious disease, it may create
complications if new ear infections occur.

e Eustachian tube dysfunction: Eustachian tube dysfunction (ETD)
refers to the failure of the eustachian tube to perform any of its
functions. ETD usually presents symptoms of pressure (aural
fullness), “popping sensations”, “underwater sensations”, crackling,
ringing, muffled hearing, or own voice sounding louder (autophony).

e Perforated TM: Perforations of the TM refer to a hole or a tear in the
eardrum. It can be caused by trauma or as a complication of AOM or
Chronic Suppurative Otitis Media (CSOM). CSOM is identified as
long-standing inflammation of the middle ear and mastoid mucosa
with a perforated TM and persistent ear discharge [8].

e Tympanic membrane retraction (TMR) is a syndrome characterized

by the inward displacement of a portion of the tympanic membrane

10



Chapter Two Literature Review

into the middle ear cavity, sometimes referred to as a retraction
pocket, and is often observed in juvenile otorhinolaryngology. The
incidence of TMR in children is documented to be between 8% and
10% [23]. Figure (2.1) shows middle ear conditions for visual

representations [24].

7 W
r.

Normal Acute otitis media (AOM)

=

Otitis media with effusion (OME)  Perforated tympanic membrane

Retracted tympanic membrane
Figure 2.1: Middle ear conditions.

11
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An infection of the upper respiratory tract brought on by a virus or
bacteria causes inflammation of the nasopharynx and the Eustachian tube,
which prevents the latter and keeps fluid in the middle ear. This increases
bacterial adhesion and colonization. Additionally, FEustachian tube
dysfunction results in negative middle ear pressure, which permits
nasopharyngeal germs and/or viruses to enter the middle ear and cause
inflammation and infection. Mistakes or delays in diagnosing otitis media
may have detrimental effects such as persistent inflammation, loss of
hearing, and harm to the eardrum [25]. Most serious consequences may be
mastoiditis, meningitis, or even brain abscesses [26]. In addition, over-
prescribed antibiotics because of misdiagnosis can lead to resistance, which
is difficult to treat [27]. Therefore, prompt and precise diagnosis is critical

in avoiding complications and employing appropriate strategies.

2.3 Tympanometry Technique

The Tympanometry is a non-invasive diagnostic technique and it’s a
recent development that measures the mobility of the tympanic membrane
and middle ear structures in response to changes in air pressure.
Tympanometry provides both qualitative and quantitative data, enabling
clinicians to detect abnormalities such as fluid accumulation, negative
pressure, or tympanic membrane perforations. This technique uses a series
of both positive and negative pressure offsets to acoustically define the ear
canal. Conclusions on middle ear health and eardrum movement may then
be made [28]. Figure (2.2) depicts how the determination of absorbance
tympanometry works. An acoustic probe that forms an airtight seal in the

ear canal 1s used.

12
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The probe’s microphone contains a sound-capturing device that emits
sound at 226 Hz or 1 kHz at a level of around 85dB SPL. The level of
sound is termed as sound pressure level (SPL). Adults generally utilize 226
Hz while 1 kHz is utilized in pediatric tympanometry, but the frequency
range depends on the patient. The resulting sound pressure level in the ear
canal is determined by the variations in the energy of sound that is absorbed

and reflected.

Absorbance

Pressure (Pa)

Sound (Hz)

Figure 2.2: Standard absorbance tympanometry using an acoustic probe
with an airtight seal in the ear canal [29].

During the measurement, the device changes the ear's pressure from
+200 to -400 decaPascal (daPa). As the middle ear structures and eardrum
tension fluctuate, the absorbed energy also changes with the pressure
change. A tympanogram is then used to show these effects [29], which
displays the admittance spectrum in contrast to the pressure showing the
greatest level of diagnostic understanding. Quantitative information can be
produced by tympanometry, e.g. numerical and graphical data of pressures
that are both positive and negative which are generated and the amount of
sound energy absorbed by the middle ear system together with ear canal
volume [30]. Among these measurements:
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e Peak Pressure (PP): As the pressure delivered to the ear canal
declines from 200 daPa, the acoustic energy of the probe tone
continues. The sound of the probe tone and the energy transmitted to
the middle ear reach a max level when the pressures from both
parties of the TM are balanced. Although pressures in the range of —
50 to +50 daPa can be regarded as reasonable in adults, thoroughly
monitored circumstances the 95% range in healthy subjects is —20 to
+20 daPa. Moreover, pressures as low as —100 daPa may not be of
clinical significance [31].

e Compliance: It measures the flexibility or mobility of the eardrums
and middle ear system in reaction to sound or pressure [32]. It is
computed from the tympanogram by analyzing the peak of the
acoustic admittance curve, which represents the maximum mobility
of the eardrums and middle ear system. Reduced compliance
suggests stiffness or fluid in the middle ear, while increased
compliance may indicate hypermobility or tympanic membrane
damage.

e FEar Canal Volume (ECV): ECV can be measured and displayed on
the tympanogram printout, and the normal range is age-dependent.
Moreover, across all age groups, females have a lower ECV than
men. The most important utilization of the ECV measurement is to
make a distinction between normal and perforated TMs or between
tympanostomy tubes that are obstructed and those that are working
[33]. Adult ECV ranges from 0.6 to 1.5 cm3, whereas children's ECV
ranges from 0.4 to 1.0 cm3.

e Tympanometric Width (Gradient): Gradient is the pressure interval

including one half peak of the admittance in the plane of the TM. In
14
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the plane of the TM, gradient has a low association with Peak
Admittance (PA) and a narrow normal distribution that is
independent of pump speed, making it the preferable measure,
bringing complementary instead of redundant knowledge about the
middle-ear transmission system [34]. A value of less than 200 daPa
may be considered typical for children aged one to seven if the

gradient is used as a description.

Tympanometry data are typically depicted as a tympanogram,
categorized into several categories as shown in Figure (2.3) according to the

patterns established by Liden and Jerger [35].

2.5

2.0

Normal Range '\ Type Ad

Type C | / \ Type A

1.0 \/\-{ &W B
0.0 — X

Type As

Compliance

-400 -200 0 +200 +400
Air Pressure in mm H;O

Figure 2.3: Five types of data tympanograms [36].

e Type A denotes typical middle ear function, marked by normal
pressure and compliance.

e Type As (shallow) signifies reduced compliance, often associated
with inflexible middle ear components, as seen in otosclerosis.

e Type Ad (deep) configuration signifies markedly increased
compliance, which may be attributable to ossicular discontinuity or a

relaxed tympanic membrane.
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e Type B is characterized by a flat trace, usually indicating fluid in the
middle ear, a perforated tympanic membrane, or impacted cerumen.

e Type C displays a peak with negative pressure, signifying Eustachian
tube dysfunction, which is commonly associated with otitis media
with effusion (OME).

This classification system aids in diagnosing various middle ear

problems and guides appropriate treatment techniques.

2.4 Artificial Intelligence

The cognitive abilities of the human mind can be replicated by robots
using the artificial intelligence (AI) branch of computer science. Al
frameworks attempt to address puzzles that these algorithms are incapable
of explaining in the classical sense [37]. Artificial intelligence, with all its
advantages, 1s now transforming human society. Al has also been accepted
in the educational sphere toward betterment of guiding students learning
processes and other educational activities [38]. In the context of enhancing
human comfort and technology advancement, researchers and Al scientists

are using Al tools and methodologies [39].

Intelligent machines capable of human-like learning and reasoning
are the products of Al technologies. It has found successful application in
several industrial domains Computer vision, speech recognition,
autonomous vehicles, and picture categorization Al has set numerous
milestones. Al applies a range of logic, probabilistic and economic
techniques, as well as search and mathematical optimization algorithms
[40]. The domain of artificial intelligence encompasses several domains,

including Computer science, mathematics, psychology, linguistics,
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philosophy, neuroscience, and artificial psychology [41]. Implementation of
Al will facilitate development of design procedures based on data-driven

security protocols.

Determining methods for enabling a machine to recognize and
formulate medical abstractions and clinical concepts and solve complex
healthcare problems is a key focus of Al research. Advances in processing
power, the development of sophisticated algorithms, and the continuous
accumulation of large-scale medical data have led to a rapid expansion of
Al applications across almost every area [42]. Whether in diagnostics,
personalized treatment, or administrative tasks, Artificial Intelligence (Al)
1s increasingly playing a transformative role. In the context of medicine, Al
can be broadly defined as the ability of machines to simulate human clinical
reasoning, learning from data to support or even enhance decision-making
in patient care and medical research, where the common attribute of Al is
the ability to simulate reasoning processes of human beings in learning and
resolving tasks or challenges [43]. Al research covers a range of topics
including Machine learning (ML), Deep learning (DL), and other related
fields.

2.5 Machine Learning

Recognition of patterns in data and making decisions with minimal
human help is possible through the utilization of machine learning, a
subdivision of artificial intelligence. Based on their learning strategies and
approaches to problem-solving, machine learning algorithms can be roughly
divided into three main categories: reinforcement learning, unsupervised

learning, and supervised learning. The combination of the objectives of
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these forms of data-driven machine learning gives rise to almost all

applications of machine learning [44].

2.6 Neural Networks

Neural networks are a category of algorithms engineered to identify
patterns by mimicking the functioning of the human brain. They comprise
interconnected layers of nodes (or neurons) that interpret input data via
weighted connections, allowing the model to learn intricate functions. The
neural network inspired by biological neural systems, designed for tasks
such as pattern recognition, data classification, and prediction [45]. NNs
exist in numerous forms and types, including shallow and deep neural
networks. The terms "shallow" and "deep" refer to the quantity of layers in
a neural network. Shallow neural networks possess a limited number of
layers, generally only a single hidden layer, whereas deep neural networks
encompass multiple hidden layers. A neural network is considered a deep
neural network when it includes two or more hidden layers between the

input and output layers.

2.7 Deep Learning in Medical Diagnosis

ML focuses on algorithms that learn patterns from data using
manually engineered features, while DL is a subset of ML that uses multi-
layer neural networks to automatically extract features and learn complex
representations directly from raw data without manual intervention. DL is
regarded as an advanced kind of Al that enables computers to learn and
make predictions without being explicitly programmed. It allows computers
to automatically extract, analyze, and comprehend meaningful information

from raw data [46]. The DL architecture outperforms classical approaches
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in current scenarios, involving complicated challenges like computer vision
and human language understanding. DL can tackle complicated issues using
multilayer structures, making the problem-solving process faster and the
outcomes more accurate. Multilayer is a subsampling technique used in the
DL architecture. This makes DL extremely effective in tackling complicated
issues [47]. DL is a technology developed from Artificial Neural Networks
(ANN) and is considered one of the most significant advancements in
intelligent operation. Well-known DL techniques include Multi-Layer
Perceptron (MLP), Convolutional Neural Networks (CNN or ConvNet), and

recurrent neural networks (long short-term memory).

2.7.1 Multi-Layer Perceptron (MLP)

In deep learning, a multilayer perceptron (MLP) is a name for a
feedforward neural network consisting of fully connected neurons with
nonlinear activation functions, organized in layers, notable for being able to

distinguish data that is not linearly separable.

This primary architecture of the multi-layered neural networks will
be used for carrying out the necessary DL tasks. MLP extracts simple
features in the first layer and feeds those simple features into the subsequent

layers to extract more complex concepts.

DL models have been shown to learn useful representations of raw
data and perform well in dealing with complex engineering problems

related to healthcare management [48].

Figure (2.4) presents the multi-layered feed-forward neural network
(MLP-NN), which consists of many layers. Layer 1 includes an input layer

that matches the feature space and is followed by multiple nonlinearity
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layers. The final layer includes an output layer that matches the output

space [49].
Input Layer
//A;\\.
. 4
Input Data— ~— Output
- Y
‘\7‘/,'—‘
- Output layer

Hidden Layers

Figure 2.4: Multi-layer perceptron (MLP-NN) [49].
2.1.2 Convolutional Neural Networks (CNN)

In the field of DL, the CNN is the most famous and commonly
employed algorithm. The main benefit of CNN compared to its
predecessors is that it automatically identifies the relevant features without
any human supervision [50]. CNNs have been extensively applied in a
range of different fields, including computer vision [51], speech processing

[52], Face Recognition [53], etc.

The structure of CNNs was inspired by neurons in human and animal
brains, similar to a conventional neural network. More specifically, in a
cat’s brain, a complex sequence of cells forms the visual cortex; this
sequence 1s simulated by the CNN. Goodfellow et al. [54] identified three
key benefits of the CNN: equivalent representations, sparse interactions,

and parameter sharing.
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Unlike conventional fully connected (FC) networks, shared weights
and local connections in the CNN are employed to make full use of 2D

input-data structures like image signals.

This operation utilizes an extremely small number of parameters,
which both simplifies the training process and speeds up the network. This
is the same as in the visual cortex cells. Notably, only small regions of a
scene are sensed by these cells rather than the whole scene (i.e., these cells
spatially extract the local correlation available in the input, like local filters
over the input). The benefit of convolution is that it efficiently detects and
learns spatial patterns such as edges, textures, and shapes in data by using

small filters that scan across the input.

A commonly used type of CNN, which is similar to the multi-layer
perceptron (MLP), consists of numerous convolution layers preceding sub-
sampling (pooling) layers, while the ending layers are FC layers. An
example of CNN architecture for image classification is illustrated in Figure

(2.5).

The CNN architecture processes images through multiple
computational stages. First, the input images are fed into the network,
where convolutional layers extract spatial features such as edges, textures,
and color variations using learnable filters. Each convolution is followed by
a max-pooling layer, which reduces the spatial dimensions and retains the
most significant features, improving computational efficiency and

robustness to small shifts in the image.

After feature extraction, the resulting feature maps are flattened and

passed into fully connected layers, which combine the extracted features to
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form high-level representations. Dropout is applied to prevent overfitting by
randomly deactivating some neurons during training. Finally, an output

layer classify probabilities, identifying the input image as one of the classes.

Convolutional Neural Network (CNN) Models" architecture

£ S
r Al
Convolution Layers along with Maxpooling Layers
“ (.l)nrz
: Conv3 |
i 4 .

SaSSD]) WO Jo uonporfissny)

Figure 2.5: An example of CNN architecture for image classification [55].

2.7.2.1 CNN Layers

Convolutional Neural Networks (CNNs) are composed of multiple
specialized layers that work together to automatically extract hierarchical
features from input data. Each layer type serves a distinct purpose,
contributing to the network's ability to learn complex patterns efficiently.
The foundational building block is the convolutional layer, which applies
learnable filters to local regions of the input, detecting spatial patterns such
as edges, textures, or shapes through parameter-sharing, significantly
reducing computational complexity. Following this, pooling layers (e.g.,
max or average pooling) down sample feature maps by summarizing local
regions, enhancing translational invariance and reducing spatial dimensions
while retaining critical information. Non-linear activation layers, such as
ReLU (Rectified Linear Unit), introduce sparsity and non-linearity to the

model, enabling it to capture intricate relationships in the data. Deeper
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architectures often incorporate normalization layers (e.g., Dbatch
normalization) to stabilize training by standardizing inputs to subsequent
layers, mitigating internal covariate shift. For high-level tasks like
classification, fully connected layers aggregate learned features into global

representations, mapping them to output classes [56].

The convolutional layer is the cornerstone of CNNs, responsible for
detecting local patterns (e.g., edges, textures) through learned filters

(kernels) [57].

« Operation:

o A kernel (e.g., 3x3, 5x5) slides over the input image or feature
map, computing the dot product between the kernel weights
and the corresponding input region. For example, consider a
simple (3 x 3) kernel applied to a (5 x 5) grayscale image. The
kernel slides over the image and, at each position, multiplies its
values element-wise with the corresponding (3 x 3) region of
the image. The resulting nine products are then summed to
produce a single output value, representing one pixel in the
output feature map. This process repeats across the entire
image, allowing the convolutional layer to detect specific local
features such as edges or corners.

o Mathematically, the output feature map h* for the k-th kernel is

computed as:

Rk = F(WK « x + b¥) (2.1)

Where W¥ is the kernel weight matrix, x is the input, b*is the bias,

and f'is the activation function.
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« Key Concepts:

o Stride: The step size of the kernel sliding (e.g., stride=1 shifts
the kernel one pixel at a time). Larger strides reduce spatial
dimensions. Using an appropriate stride helps control the
output size and computational efficiency, allowing the network
to balance feature detail with processing speed.

o Padding: Adding zeros around the input to preserve spatial
resolution (e.g., "same" padding retains input size). Padding
preserves edge information by maintaining the original spatial
dimensions, ensuring that features near image borders are not
lost during convolution.

o Sparse Connectivity: Each neuron connects only to a local
region, reducing parameters and computational cost.

o Weight Sharing: Kernels reuse the same weights across the
entire input, enhancing efficiency and translation invariance.

« Benefits:

o Captures spatial hierarchies by learning low-level to high-level

features.

o Reduces parameter count compared to fully connected layers.

The pooling layer down samples feature maps to reduce spatial
dimensions and computational complexity while retaining critical

information [58].

o Types:
o Max Pooling: Selects the maximum value in a window
(e.g., 2x2), emphasizing the most salient features. Max pooling

highlights strong activations that indicate key features.
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o Average Pooling: Computes the average value in a window,
smoothing features. Average pooling preserves overall
contextual information by considering all pixel contributions
equally.

o Global Average Pooling (GAP): Reduces each feature map to
a single value by averaging all elements, often used before
classification layers.

o Purpose:
o Invariance to small translations and distortions.

o Reduces overfitting by lowering parameter count.

Activation functions introduce non-linearity, enabling the network to
model complex relationships [59]. Activation functions determine how a
neuron’s input is transformed into output, enabling the network to capture
relationships in the data. Without activation functions, a neural network
would behave like a linear model, limiting it to only linear mappings
regardless of depth. Non-linear activation functions, on the other hand,
allow the network to learn complex patterns and interactions, making it
capable of modeling intricate, real-world relationships. Common functions

include:

« ReLU (Rectified Linear Unit):

f(x) = max(0,x) (2.2)
Where:
f (x): The output of the ReLU function.

x: The input value to the function
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max (0, x): The function that returns the maximum value between 0 and x.

o Advantages: Computationally efficient, mitigates vanishing
gradient issues.
o Variants:
« Leaky ReLU: Allows small negative values to prevent

"dead neurons":

fay={ »Ux>0 @3

mx, otherwise

Where:

f(x): The output of the Leaky ReL U function.
x: The input value to the function.

m: A small, constant slope for negative inputs

« Sigmoid and Tanh:
o Historically used but prone to vanishing gradients in deep

networks.

The fully connected layer aggregates high-level features for final

predictions (e.g., classification) [60].

« Structure:
o Neurons connect to all activations from the previous layer.
o Input is flattened into a vector (e.g., from a 3D feature map).
o Outputs class probabilities using softmax (for classification) or
continuous values (for regression).

o Role:
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o Translates extracted features into interpretable outputs (e.g.,

class labels).

2.7.2.2 Loss Functions
Loss functions quantify prediction errors to guide parameter updates during

training [61]:
« Cross-Entropy Loss (for classification):
H(p,y) = X;yilog(p:) (2.4)
Where:

y;: The true label for class i.

p;: The predicted probability from the model that the input belongs to class
L.

o Measures divergence between predicted probabilities pi and
true labels vyi.
. Euclidean Loss (for regression):
HPp,y) = 5= Xl (p; — y)° (2.5)
Where:

N: The total number of data points in the batch or dataset.
y;: The true label for class i.

p;: The predicted probability from the model that the input belongs to class

o Computes mean squared error between predictions and targets.
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2.7.2.3 Regularization

To prevent overfitting, CNNs employ regularization methods:

« Dropout: Randomly deactivates neurons during training to force
redundancy in feature learning. Dropout ensures the network does not
rely too heavily on any single neuron, promoting more robust feature
learning.

. Batch Normalization: Normalizes layer outputs to zero mean and
unit variance, stabilizing training and reducing dependency on
initialization [62]. It improves training stability and accelerates
convergence by reducing internal covariate shift and making the

network less sensitive to weight initialization.

Normalized Output = \/’% (2.6)
Where:
u: The mean of the values.
o?: The variance of the values.

€: (epsilon): A very small constant added for numerical stability to prevent

division by zero.

CNN s process data hierarchically:

1. Early Layers: Detect edges, corners, and textures.

2. Middle Layers: Capture complex patterns (e.g., shapes).

3. Late Layers: Recognize high-level semantic features (e.g., object
parts).

4. FC Layers: Synthesize features for task-specific predictions.
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Together, these layers enable CNNs to excel in tasks ranging from image

recognition to medical diagnosis.

2.7.2.4 Optimizers

Optimizers play a critical role in minimizing the loss function by
iteratively updating network parameters (e.g., weights, biases) through
gradient-based learning. The learning rate, a hyper-parameter defining the
step size for parameter updates, must be carefully chosen to balance

convergence speed and stability.

Below, is the outline prominent gradient-based optimization

algorithms and their enhancements.

Batch Gradient Descent (BGD): BGD updates parameters once per
epoch after computing the gradient over the entire training dataset. It is
stable and produces consistent convergence for small datasets. However, it
requires substantial computational resources and may converge slowly or to

local optima for large datasets (non-convex problems) [63].

Stochastic Gradient Descent (SGD): SGD updates parameters for
each training sample, making it memory-efficient and faster for large
datasets. However, frequent updates introduce noisy gradients, leading to

unstable convergence behavior [64].

Mini-batch Gradient Descent: This approach divides the dataset
into mini-batches and updates parameters after processing each batch. It
combines the stability of BGD with the efficiency of SGD, offering steady

convergence, reduced memory usage, and computational practicality [65].
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Adam Optimizer: Adam adapts learning rates for each parameter by
combining momentum and RMSprop benefits [66]. It uses moving averages

of gradients (E[5]") and squared gradients (E[6§2]) to scale updates:

Wit = Wyt — ——— - E[§]" 2.7)

RGN

Where:

w; ¢ The value of the weight parameter connecting neuron j to neuron i at
the current timestep t.

w; je-1: The value of the same weight parameter at the previous timestep t-1.

n (eta): The global learning rate, a hyperparameter that controls the overall
step size of the update.

E[6]%: The bias-corrected estimate of the first moment (the mean) of the
gradients at timestep t. It represents the moving average of past gradients.

E[62]t: The bias-corrected estimate of the second moment (the uncentered
variance) of the gradients at timestep t. It represents the moving average of
the squares of past gradients.

e: (epsilon): A very small constant added for numerical stability to prevent
division by zero.

Adam is computationally efficient, robust to noisy gradients, and

widely used for deep networks. Practical Considerations:

« Learning Rate (n): Critical for balancing convergence and stability.
Too high a rate causes oscillations; too low slows training.

« Local vs. Global Minima: Momentum and adaptive methods like
Adam mitigate local minima traps in non-convex optimization.

« Resource Efficiency: Mini-batch GD and Adam optimize memory
and computation, making them suitable for large-scale datasets.
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In summary, optimizer selection depends on dataset size,
computational resources, and the problem’s convexity. Mini-batch GD with
enhancements like Adam often provides an effective balance of speed,

stability, and accuracy in CNN training.

2.7.3 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network
designed to process sequential data by retaining a recollection of previous
inputs through recurrent connections. An RNN must possess a minimum of
three hidden levels. The fundamental design of RNNs comprises input
units, output units, and hidden units, with the hidden units executing all
computations through weight adjustments to generate the outputs [67]. The
RNN model features a unidirectional flow of information from the input
units to the hidden units, along with a directional loop that evaluates the
error of the current hidden layer against that of the preceding hidden layer,

subsequently adjusting the weights between the hidden levels.

The vanishing gradient problem may occur in RNNs when gradient-
based learning techniques are employed for weight updates. Weights are
adjusted based on the updated ratio of the partial derivative of the error
function throughout each training iteration. In certain instances, the gradient
may be exceedingly minimal. These erroneous signals may either escalate
or dissipate, so inhibiting the alteration of the weight's value. The
disappearance of erroneous signals may lead to fluctuations in the weights.
With an elusive error, the learning process either requires an excessive

duration or fails entirely [68].
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2.71.4 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) represent a class of deep
learning models and a type of RNN specifically designed to handle
sequential and time-dependent data. Unlike traditional feedforward neural
networks, LSTMs incorporate cyclical connections that enable information
persistence across different time steps, allowing them to model dynamic
temporal behavior. This capability makes LSTMs particularly suitable for
applications such as speech recognition, language modeling, and time-series

analysis.

In the context of OM diseases classification, LSTMs can be applied
to analyze temporal patterns in tympanometry data, where pressure and
compliance readings vary over time during the measurement process. The
standard RNNs face challenges such as vanishing and exploding gradients
during training, limiting their ability to capture long-term dependencies. On
the other hand, LSTMs designed to model sequential data by mitigating
vanishing gradient issues through gated memory cells. LSTMs maintain and
update an internal cell state via input, output, and forget gates, enabling

them to capture long-range dependencies in time-series data [69].

In the context of tympanometric time-series, LSTMs can model
dynamic pressure-compliance curves over the duration of the test, offering a
powerful approach to real-time OM diagnosis. A popular choice for

forecasting are Long Short-Term Memory (LSTM) cells.

Since LSTMs incorporate memory units that explicitly allow the
network to learn when to "forget" previous hidden states and when to

update hidden states given new information, they have been utilized
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effectively for sequences or temporally based data [70]. The LSTM
architecture is shown in Figure (2.6). The C; is unit memory, X; is the input,

and P; is the output. The F;, i;, and o, are the weight matrices.

C.;

—

LSTM Unit LSTM Unit

hl-3
—

Figure 2.6: Long Short-term Memory Neural Network [70].

The LSTM unit is composed of a cell state and three regulatory gates [71]:

1. Forget Gate: Decides which information to discard from the cell

state by outputting values between 0 (forget) and 1 (retain).

fO =0 (Wrx®+ Rey® Y 4 pro D4 pr) (2.8)
Where:
The symbol (+) is the point-wise multiplication of two vectors.
x®: The current input.
y&=1D: The output of the LSTM in the last iteration.

c=D: The cell value of the LSTM in the last iteration.
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Wr R, ps: The weights associated with x® yE=1) (1)

bf: The bias vector.

2. Input Gate: Determines which new information to store in the cell
state. It uses a sigmoid activation function to filter inputs and a
hyperbolic tangent (tanh) function to transform values into a range of
[-1, 1].
i®=0W;x®+ R y® VY + p;- ¢tV + b)) (2.9)

Where:

The symbol (+) is the point-wise multiplication of two vectors.
x®: The current input.

y =1 The output of the LSTM in the last iteration.

c=D: The cell value of the LSTM in the last iteration.

W; ,R;, p;: The weights associated with x(®, y&=1 =1,

b;: The bias vector.

3. Output Gate: Controls which parts of the cell state are exposed as

the hidden state for the next time step, again using sigmoid and Tanh

functions.
0® = ¢ (W, x® + R, y& D 4 p, - ¢tV 4 p) (2.10)
Where:

The symbol (+) is the point-wise multiplication of two vectors.
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x®: The current input.

y&=1: The output of the LSTM in the last iteration.

c&=V: The cell value of the LSTM in the last iteration.

W, .R,., p,: The weights associated with x(®), yt=1 -1
b,: The bias vector.

For example, assume the following inputs: the current input x® = [0.6],
the previous output y= = [0.4], the previous cell value ¢~V = [0.5],
and the weights Wy = [0.8], R =[0.4], pf =[0.2], by =[0.1], W; =
[0.7], R;=1[0.3], p,=][0.1], b; =[0.05], W, =1[0.5], R, =1[04],

The forget gate determines which portion of the previous cell value
should be retained: f® = ¢ (0.8 % 0.6 + 0.4 x 0.4+ 0.2 x 0.5+ 0.1) ~
0.73. Thus, approximately 73% of the previous memory is preserved. The
input gate regulates how much new information enters the cell value:
i® = ¢(0.7%0.6+0.3x%x0.4+0.1x0.5+0.05) =~ 0.69. The output
gate determines the hidden state for this time step: 0¥ = ¢ (0.5 X 0.6 +
04%x04+0.2x%x05+4+0.1) = 0.68. These computed gate activations
demonstrate how the LSTM selectively controls the flow of information at
each time step. By balancing the retention of relevant past information
through the forget gate, the integration of new input through the input gate,
and the generation of the current hidden state through the output gate, the

LSTM effectively maintains temporal dependencies within sequential data.
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2.8 Artificial Intelligence in Healthcare

Al can enable healthcare systems to achieve their quadruple aim by
democratising and standardising a future of connected and Al augmented
care, precision diagnostics, precision therapeutics and, ultimately, precision
medicine [72]. Research in the application of Al healthcare continues to
accelerate rapidly, with potential use cases being demonstrated across the
healthcare sector (both physical and mental health) including drug
discovery, virtual clinical consultation, disease diagnosis, prognosis,

medication management and health monitoring.

Al today (and in the near future): Currently, Al systems are not
reasoning engines, which means they cannot reason the same way as human
physicians, who can draw upon common sense or clinical intuition and
experience [73]. Instead, Al resembles a signal translator, translating
patterns from datasets. Al systems today are beginning to be adopted by
healthcare organisations to automate time consuming, high volume
repetitive tasks. Moreover, there is considerable progress in demonstrating
the use of Al in precision diagnostics (diabetic retinopathy and radiotherapy

planning).

Al in the medium term (the next 510 years): In the medium term, Al
will be significant progress in the development of powerful algorithms that
are efficient (require less data to train), able to use unlabelled data, and can
combine disparate structured and unstructured data including imaging,
electronic health data, multi-omic, behavioural and pharmacological data.
In addition, healthcare organisations and medical practices will evolve from
being adopters of Al platforms, to becoming co-innovators with technology

partners in the development of novel Al systems for precision therapeutics.
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Al in the long term (>10 years): In the long term, Al systems will
become more intelligent, enabling Al healthcare systems achieve a state of
precision medicine through Al-augmented healthcare and connected care.
Healthcare will shift from the traditional one-size-fits-all form of medicine
to a preventative, personalized, data-driven disease management model that
achieves improved patient outcomes (improved patient and clinical

experiences of care) in a more costeffective delivery system.

2.9 Swarm Intelligence (SI)

The swarm intelligence (SI) algorithm is a simulation technique
designed to replicate biological collective intelligence. The inherent
parallelism and distributed nature of SI algorithms facilitate the resolution
of intricate nonlinear problems, exhibiting advanced attributes of self-
adaptability, resilience, and search efficacy. To date, numerous optimization
techniques inspired by swarm intelligence exist, including conventional
particle swarm optimization (PSO) and ant colony optimization (ACO). In
recent years, other advancements have emerged, including the artificial bee
colony (ABC), bacterial foraging algorithm (BFO), and butterfly
optimization algorithm (BOA) [74].

SI algorithms seek the optimal solution with heuristic information. It
is applicable to a diverse range of optimization challenges, including
dynamic optimization issues, multi-objective optimization problems, and
NP problems. The continuous advancement of loT demonstrates significant
potential for SI in IoT-related applications. The SI algorithms were
developed to examine how basic individuals can generate sophisticated and
intricate swarm optimization behaviors via cooperation, organization,
information exchange, and learning within a swarm [75].
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2.10Artificial Bee Colony (ABC)

Swarm Intelligence (SI) denotes a collective computational
methodology inspired by the decentralized, self-organizing behaviors
observed in natural systems. In SI, basic agents engage locally with each
other and their surroundings, resulting in the formation of sophisticated,
intelligent global behavior without centralized oversight. This paradigm
has been extensively utilized in optimization problems, where collaboration
among agents facilitates effective exploration and exploitation of the
solution space. Optimization algorithms use a technique to find the best
solution in a space of candidate solutions. Since its inspiration by Dervis
Karaboga in 2005 [76], the artificial bee colony (ABC) algorithm has been
considered a cornerstone in SI. The ABC algorithm mimics the behavior of
foraging honeybees, consisting of three categories: employed bees,

onlookers, and scouts.

The algorithm governs the exploration and exploitation processes,
defining the search engine as globally optimal in a search landscape [77].
The Artificial Bee Colony (ABC) algorithm adopts a population-based
approach for optimization as shown in Figure (2.7), the process commences
with the random initialization of a population of bees solutions (employed
bees). For each bee, a function called the fitness function is applied to each
bee solution to get a value, which serves as the fitness value. The fitness
function is a function to evaluate the solutions. The population is
subsequently partitioned into two primary groups based on fitness: high-
performing bees and low-performing bees. The high-performing bees are
further divided using the average of fitness values of its bees for

distinguishing between elite bees and moderate bees.
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Figure 2.7: Artificial bee colony steps.

Increasing the number of colonies in the ABC algorithm enhances

exploration of the search space and improves the likelihood of finding the

global optimum, but it also increases computational cost and processing

time. Both elite and moderate bees are subjected to a neighborhood
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exploration procedure (onlooker bees), wherein new bee solutions are
generated for each bee within a defined neighborhood range, thus

facilitating local exploitation of promising regions in the search space.

The number of neighborhood explorations allocated to elite bees is
higher than the number of neighborhood explorations allocated to moderate
bees, favoring the elite bees with a more intense local search. In contrast,
the low-performing bees undergo complete replacement via random
generation of new bee solutions (scout bees) to encourage global

exploration and maintain population diversity.

The newly generated bees, moderate bees, and elite bees are merged
and then sorted according to their fitness values. This iterative process of
partitioning, neighborhood exploitation, random regeneration, merging, and

sorting is repeated across a predefined number of iterations.

Throughout the iterations, the algorithm continuously monitors and
records the best bee solution discovered thus far, ensuring that when the

iterations are ended, the best bee solution represents the optimal solution.

2.11Evaluation Performance

To assess a predictive model's performance, it is essential to employ
rigorous metrics that comprehensively analyze its effectiveness. This
section outlines the primary metrics utilized to evaluate the model's
classification performance: accuracy, precision, recall, and Fl-score [78,

79]. The employed evaluation metrics comprise:

1. Accuracy measures the overall correctness of predictions as

demonstrated by equation 2.11.

40



Chapter Two Literature Review

TP+TN
TP+TN+FP+FN

Accuracy = (2.11)

2. Precision indicates how often the model correctly identifies OME

when predicted as demonstrated by equation 2.12.

TP
TP+FP

Precision = (2.12)

3. Recall evaluates the model’s ability to detect actual OME cases,

reducing false negatives as demonstrated by equation 2.13.

TP
TP+FN

Recall = (2.13)

4. F1-score balances precision and recall, providing a comprehensive
measure of classification performance as demonstrated by equation
2.14.

F1Score = 2 X Precision X Recall (2.14)

Precision+ Recall

Where:

TP = True Positives

TN = True Negatives

FP = False Positives

FN = False Negatives

In a binary classification problem, the confusion matrix is a 2x2 table
that summarizes the model’s performance by comparing predicted and
actual outcomes, containing four key elements: true positives, true
negatives, false positives, and false negatives [80]. It provides a clear
understanding of how well the model distinguishes between the two classes,

allowing for the computation of key metrics such as accuracy, precision,
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recall, and Fl-score. When extended to multi-class classification, the
confusion matrix becomes a n X n table, where (n) represents the number
of classes. Each row corresponds to the actual class, and each column
represents the predicted class, enabling a detailed analysis of
misclassifications across multiple categories [81]. This multi-class
confusion matrix helps identify which specific classes are frequently
confused, offering deeper insights into model weaknesses and guiding

improvements in training and feature extraction.

2.12 Software Tools

The programming language utilized to apply and test the various
deep learning models is Python, which is considered an elegant and high-
level programming language. Its popularity within scientific computing and
machine learning stems from its readability and expansive ecosystem.
Python’s features can be supplemented with a number of libraries which

simplify the handling of data, model creation, and the evaluation of models.

For numerical operations and data handling, Python libraries NumPy
and Pandas are used and data visualization is performed using Matplotlib
and Seaborn. Model construction and training is performed in TensorFlow

and Keras, which are sophisticated tools for training deep neural networks.

The code was run in Google Colaboratory (Colab), a cloud-based
interactive platform that provides a mounted drive for files, GPU-enabled
Python environment and real-time collaboration with other users. Colab
integrates seamlessly with Google Drive which streamlines access to

datasets as well as collaborative code writing.
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2.13 Literature Review

Al encompasses algorithmic frameworks that mimic human cognition
to automate complex tasks. In OM, Al-driven analysis leverages otoscopic
images, tympanometry, and acoustic signals to distinguish normal and

pathological states.

Choi et al. (2022) constructed a multi-class CNN using EfficientNet-
B4 that classifies primary middle-ear disorders (OME, COM, normal) and
secondary findings (attic cholesteatoma, meningitis, tube insertion,
otomycosis) with an accuracy of 95.32% for primary classes [82].
Sundgaard et al. (2022) developed a CNN for detecting otitis media based
on wide-band tympanometry using 1,014 measurements, obtaining 92.6%

accuracy, explaining model decisions with saliency maps [83].

Sundgaard et al. (2021) conducted a comparative study on five loss
functions the used for OM classification, determining that deep metric
(triplet) loss yielded the highest precision for AOM detection while
maintaining an adequate recall [84]. In order to differentiate CSOM,
cholesteatoma, and normal anatomy, Wang et al. (2022) [85] developed two
deep learning networks (CNN with VGG16), a classification model, and an
Region Of Interest (ROI) localization model, on 973 CT-scanned ears. In
examining CNN-based OM screening, Sandstrom et al. (2022) utilized
digitized otoscopic images that had been expertly labeled, dividing the 347

images into three screening categories [86].

Mehedi et al. (2025) implemented Fuzzy Restricted Boltzmann
Machine (FRBM) for the classification of infections involving the eardrum

and ear canal [87]. Crowson et al. (2023) performed an evaluation of a
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pediatric middle-ear deep learning algorithm against clinician practitioners
for myringotomy/tube-indication diagnostic comparisons [88]. Cha et al.
(2019) developed an ensemble model consisting of Inception-V3 and
ResNet101 to classify six categories of ear diseases [89]. Basaran, Comert,
and Celik (2020) developed a Faster R-CNN based detector for the
tympanic membranes and evaluated it against a set of noise conditions

using different pre-trained models [90].

Wu et al. (2021) aimed for home-based screening of AOM, OME,
and normal ears employing Xception and MobileNet-V2 with transfer
learning on 12,203 pediatric otoscopic images, supplemented by 102

images obtained via smartphone [91].

While some works fuse ML and DL methods, others combine
multiple modalities of a single diagnostic type, such as imaging. The
combination of the random forest analysis of tympanometry data and
otoscopy image Inception-ResNet-v2 predictions gave accuracy of 84.9%
when they applied the majority voting technique (Binol et al., 2020) [92].
Caliskan (2022) [93] combined VGGI16 with Support Vector Machine
(SVM) to classify tympanometry images into normal and abnormal classes

using a dataset of 956 images, having an accuracy of 82.17%.

Akyol et al. (2025) [94] constructed an ensemble with soft voting
from several pretrained CNNs on otoscopy images, noting an accuracy of
98.8%, sensitivity of 97.5%, and specificity of 99.1%. Lee et al. (2025) [95]
noted that with EfficientNet-B7 backbones, the fulfilling of classification
and regression tasks for TM diseases and hearing loss in children surpassed

93.59% accuracy.

44



Chapter Two Literature Review

Myburgh et al. (2016) [96] trained a decision tree algorithm on high
quality preprocessed images of eardrums taken with digital video of
otoscopes, which then uses predetermined indicators to categorize images
that are not diagnosed into five OM groups. Images taken on-site with a
cheap, custom-made video-otoscope had an accuracy of 78.7%. The dataset
includes otoscopy images different cases of tympanic membrane where the

authors removed 73 images due to insufficient image quality.

Ting et al. (2023) [97] developed and verified OME detection with
the aid of in-ear microphones and a machine learning model. Two
commercial microphones were inserted into each ear canal to record the
sound produced by participants as they continuously uttered five three-
vowel vowels. Table (2.1) presents a comparison of literature using Al

algorithms for the diagnosis of otitis media.

Table 2.1: Comparison of literature in diagnosing otitis media.

Ref./ | Diagnose Dataset Size of | Types of Models Main
Year | Method Dataset | Categories Results
[82] | Otoscopy | Images from 1,630 OME, EfficientNet | Accuracy
2022 Images | otologic clinic in COM, None -B4 95.32%
Asan Medical

Center (Private)

[83] | Tympano Images from 1014 | OME, AOM CNN Accuracy

. o
5022 metry Kamide ENT e
clinic, Japan Recall
(Private) 92.2%
F1-Score
92.6%
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[84] | Otoscopy Images from 1336 AOM, Deep neural | Accuracy
2001 Images Kamide ENT OME, and network 85%
clinic, Japan No Effusion | learning
(Private)
[85] | CT images | Images from 973 Middle Ear | CNN with | Fl-score:
2022 Xiangya Cholesteato | VGG-16 87.2%
Hospital MEC
Ospi ma ( ) Precision:
Privat CSOM
(Private) ’ 90.1%
Normal
Recall:
85.4%
[86] | Otoscopy Images from 347 Normal, CNN Accuracy:
2002 Images | New York, USA Pathological 90%
(Public) , Wax
[87] | Otoscopy dataset of ear 200 Infected vs. FRBM Accuracy:
. . o
2005 Images images from not infected 98.65%
Saudi Arabia
(Private)
[88] | Otoscopy Images from 639 Normal, Neural Accuracy
2023 Images Massachusetts OME, AOM | network 80.8%
General
Brigham
(Private)
[89] | Otoscopy Images from 10,544 | Tympanic Inception- | accuracy
2019 Images Severance perforation, V3 and 93.67%
Hospital Attic ResNet101
(Private) retraction,
Otitis
externa +
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myringitis,
Tumor,
Normal
[90] | Otoscopy | Images from 282 Normal and R-CNN, high
2020 Images | Hospital in Abnormal AlexNet, | Accuracy:
Turkey between VGGNets, 90.48%
10/2018 and GoogLeNet, | for VGG-
1/2019. (Public) and 16
ResNets
[91] | Otoscopy Images from 12,203 AOM, Xception | Accuracy:
2001 images India (Private) OME, MobileNet- | 95.72%
Normal V2
[92] | Tympano Dataset from 73 Normal vs. Random Accuracy:
2020 metry and Ohio State Abnormal forest , 84.9%
Otoscopy University Inception-
videos (OSU) and ResNet-v2
Nationwide
Children’s
Hospital
(Private)
[93] | Tympano Images from 956 Normal vs. | VGG16 + | Accuracy
2022 metry Hospital in Abnormal SVM 82.17%.
Turkey (Private) sensitivity
71.43%,
specificity
90.62%
f-score
77.92%
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[94] | Otoscopy | Images from the 880 Normal, Deep Accuracy:
2005 Images Clinical Earwax learning- 98.8%,
Hospital of plug, based Sensitivity
Universidad de Myringoscl | ensemble 97.5%,
Chile (Public) erosis, method Specificit
COM y 99.1%
[95] | Otoscopy Images from 757 normal, EfficientNet | Accuracy:
005 Images | Soonchunhyang COM, B7 model | 93.59%
University AOM, and | using MLP | sensitivity
Hospital (Public) otitis and drop | 87.19%,
externa connect specificity
95.73%.
[96] Digital Various video- 562 CSOM, Decision | Accuracy:
2016 video- otoscopes from O/W, TM, Tree 78.7%
otoscopes | Pretoria, South OME, AOM
Africa (Private)
[97] | microphon | Japan at Taipei 62 OME, SVM, Accuracy
003 es with Veterans Normal Naive for CNN:
vowel General Bayes, 80.65%
sound Hospital (Nov AdaBoost,
recordings 2020 — Aug Random
2021) (Private) Forest, and
CNN

2.14Research Gaps

A review of the existing literature reveals that most studies in Otitis

Media diagnostic have focused on visual or acoustic data, such as studies

(Esteva et al., 2021; Wu et al., 2021). While models that combine image and
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tympanometry-derived features further improved diagnostic performance
(Binol et al., 2020; Akyol et al., 2025), but these methods still rely on
processed or transformed data rather than raw device outputs. Although
there have been studies that have analyzed tympanometry data using
derived features or images, raw output from devices has not been used
directly in AI models. The raw outputs from tympanometry devices, such as
compliance, pressure, gradient, etc., can be immediately entered into the Al
model. By doing this, the Al can discern the pattern, which aids in
mitigating the bias wherein the raw outputs are less complex than images or
audio. To address limitations in previous studies, a new collection of
tympanogram types instead of image- and audio-based approaches, the

proposed method overcomes the lack of real-world datasets.
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Chapter Three
Research Methodology

3.1 Introduction

In this chapter, the proposed methodology is explained which include
all necessary algorithms and illustrations. The methodology starts with data

collecting and concludes with assessing the results.

3.2 Research Methodology

The research methodology is shown in Figure (3.1). Initially, the data
collection and preprocessing phase. The second phase data splitting divided
into training, validation, and testing, class imbalance is addressed for the
training set. The third phase, the model building and training phase, the
Artificial Bee Colony (ABC) algorithm is utilized to determine the optimal
learning rate and the optimal activation function for the LSTM model.
Multiple independent colonies operate in parallel, each initialized with a

unique set of candidate learning rates and activation functions.

The best-performing solution from each colony is used to train the
final LSTM model. Finally, the resulted model, that trained using the
optimal learning rate and the optimal activation function is subjected to a
thorough evaluation using a set of pre-defined performance metrics,
including accuracy, precision, recall, and F1-score. These metrics provide a
multidimensional assessment of model performance, ensuring a
comprehensive understanding of the classifier's predictive capability. In
realm of SI, a variety of superior algorithms have been developed, including

the firefly algorithm (FA), genetic algorithm (GA), differential evolution
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(DE), and particle swarm optimization (PSO). These strategies demonstrate
strong efficacy in addressing optimization difficulties. In comparison to
other algorithms, ABC possesses a straightforward structure, fewer control
parameters, and enhanced search capabilities. Consequently, it has been
extensively examined by numerous experts and employed to address

various complicated issues.
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Figure 3.1: The Study Methodology.
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LSTM is typically designed for sequential or temporal data, but they
are also effective in modeling relationships between dependent features
when those features exhibit ordered or correlated patterns — as in
tympanometry data. The tympanometry data contain pressure, gradient, and
compliance values that vary across a continuous range and have functional
dependencies similar to time-series behavior. The following sections will

detail the steps of the proposed methodology for the study.

3.3 Data Collection and Preprocessing

This section offers a detailed examination of the dataset collection,
organization, visualization, and preprocessing methods employed for OM
diseases classification. The initial section outlines the methodology for
collecting tympanometry data from medical clinics in Iraq and provides
visual interpretations of the dataset. The second portion provides

preprocessing steps that are applied on the dataset.

3.3.1 Data Collection

This thesis focuses on addressing the issue of categorizing OM
diseases based on tympanometry. The criterion is established to determine
the dataset that will be utilized in the thesis. A comprehensive database
from 892 patients at various medical centers in Iraq, including hospitals and
hearing service centers as shown in Table (3.1), which contains four
diseases and one health condition. The dataset includes two formats
tympanometry tests: graphical images and electronic APX format. There are
278 images for graphical images, where some images have more than one
tympanometry test, and there are 614 tympanometry tests as electronic

APX.
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Table 3.1: Sources from which tympanometry tests were collected.

Name Location Image/APX
Tikrit Teaching Hospital Salah al-Din, Iraq 46
Al-Jamhuri Hospital Nineveh Governorate 15
Puretone Hearing Services Baghdad Governorate - Al- 614
Center Harithiya
The First Center for Mosul - Al-Masarif 150
Hearing Services neighborhood
Al Rahaf Center for Salah al-Din Governorate - 67
Hearing Services Tikrit

The graphical data were obtained directly from the medical facility in
image format, while the APX format were retrieved and visualized using the
Amplisuite V2.1 tool, a Windows-based desktop software intended for
audiological data handling. Two types of format made up the combined
dataset, called the tymp-OM dataset conains 1,808, where a sample of two
formats of tympanometry tests employed in this dataset is shown in Figure
(3.2). An extraction of six clinical and demographic attributes was applied
from each tympanometry test: Age, Ear (left or right), Pressure (daPa),
Gradient (daPa), ECV (ml), and Compliance (ml).

Each ear (left or right) in the tympanometry tests, where in the
images or APX formats, was dealt with as an independent sample, because
there was no statistical relationship between each ear for the same patient.
Each image or APX format contains tympanometry data for the left and
right ears. In simple calculation there are (278 + 614) x 2 = 1784 samples.
For the image format, as mentioned lastly, there are 12 images that have
two tympanometry tests for the same patient, so the total samples are (12 x

2) + 1784 = 1808 samples.
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Figure 3.2: The two formats of tympanometry test for different patients,
where (a) is the graphical image and (b) is the electronic APX.

3.3.2 Data Preprocessing

Efficient data preprocessing is a critical step in building an effective
and generalizable deep learning model. In this stage, some critical
preprocessing methods in the classification of the tympanometry dataset
were carried out. These operations involved, as shown in Figure (3.3),
labeling, transforming categorical data into numerical data, and feature

standardizing.
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Figure 3.3: Preprocessing steps.

3.3.2.1 Labeling

The dataset was initially examined for missing values, and none were
found. Each sample was reviewed and classified by an otolaryngologist (Dr.
Mona Jassim Mohammed) using the Jerger system, resulting in a final
dataset of 1,808 labeled records categorized into five tympanogram types,
one healthy (A) and four diseases (As, Ad, B, and C), as illustrated in
Figure (3.4). The Age, Ear, Pressure, Gradient, ECV, and Compliance

columns are the features and the Type column is the target.

Figure (3.5) presents a horizontal bar chart depicting the distribution
of the Type column in the final dataset. The primary classification of the
samples was Type A (n = 1196), indicating normal middle ear function. This
was followed by Type As (n = 254), signifying reduced compliance often
associated with rigidity in the middle ear system. Type Ad (n = 170)
indicates markedly increased compliance, often linked to ossicular chain

discontinuity or tympanic membrane hypermobility.
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Age Ear Pressure Gradient ECV Compliance Type

0 64 R 17 97.0 1.00
1 64 L 77 92.0 0.98
2 13 R -4 58.0 0.00
3 13 L 13 39.0 1.00
4 27 R 3 78.0 0.00
1803 25 R -64 120.0 0.99
1804 25 L 72 146.0 1.51
1805 7 R -14 150.0 0.56
1806 7 L -1 171.0 0.51
1807 31 L -260 53.0 4.50

1808 rows % 7 columns

0.79

0.88

1.00

0.00

1.00

0.57

0.89

0.14
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A
A
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Figure 3.4: An example of the dataset.
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Type C (n = 106) signifies negative middle ear pressure, indicative of

Eustachian tube dysfunction. Figure (3.6) depicts the distribution of middle

ear pressure among the five tympanogram categories using a scatter plot.

Every type of tympanogram has distinct pressure characteristics that

correspond with clinical anticipations.
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Type A tympanograms, indicative of normal middle ear function,
display pressure values centered around O daPa, defined by a narrow
distribution. Type Ad and Type As tympanograms exhibit pressures near
atmospheric levels, however with slightly more variability. Conversely,
Type C exhibits a notable shift towards negative pressures, frequently

descending below -100 daPa, signifying Eustachian tube dysfunction.

Type B tympanograms exhibit a broad and uneven range of pressure
values. This image highlights the importance of pressure measurements in
tympanogram categorization and demonstrates the diagnostic heterogeneity

within the dataset.
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Figure 3.6: Scatter plot for pressure and Type columns.

3.3.2.2 Categorical Encoding
Initially, categorical variables were converted into numerical format

to facilitate deep learning model training. The Type column was encoded as

follows: A=0, Ad=1, As=2, B=3, and C=4. Similarly, the Ear column was
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transformed by assigning 0 to L (left) and 1 to R (right). This encoding

enabled the models to process these features effectively.

3.3.2.3 Feature Standardization

To normalize the numerical features and enhance model convergence,
StandardScaler was applied. This method adjusts the features to have a
mean of zero and a standard deviation of one. Standardization is particularly
important for Al models, as it ensures that all input features contribute
equally during model optimization. Without standardization, features with
large numeric values (like pressure or gradient) would dominate model
learning, while smaller-scale features (like compliance) would have little

influence.

3.4 Dataset Splitting

As shown in Figure (3.7), the dataset was divided into training
(64%), validation (16%), and testing (20%) subsets to support robust model
evaluation. The train and validation subsets are used in the training process,
where train data is responsible for training the LSTM model after the ABC
algorithm generated a random learning rate and a random activation
function. The validation data is used to assess the LSTM model after
training by calculating the validation accuracy. The model that had the best
validation accuracy found is considered the final trained LSTM model. The
test data used to assess the final model by calculating the accuracy,
precision, recall, and F1 score. The training dataset exhibited an issue of
class imbalance. The representation of the training data was balanced via
the Synthetic Minority Over-sampling Technique (SMOTE) to address this

1SSue.
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Figure 3.7: Dataset splitting phase

SMOTE works by selecting a minority sample, finding its nearest
neighbors, and creating new samples along the line segments connecting
them. The rationale for implementing SMOTE subsequent to
standardization is to guarantee that SMOTE for all characteristics
contributes uniformly in the generation of synthetic samples. As SMOTE
generates new data points through interpolation of existing samples,
disparate feature sizes might skew distance computations and yield
implausible synthetic data. Standardizing the data initially ensures that each
feature is translated to a uniform scale, enabling SMOTE to produce more
balanced and significant synthetic samples that accurately represent the
underlying structure of the data. The dataset splitting led to 3324 samples

for training, 832 samples for validation, and 1040 samples for testing.

3.5 Model Creation and Training

This section describes the process of designing and training the
classification model for OM diseases based on tympanometry data. The
approach integrates a LSTM with the ABC optimization algorithm to

enhance model performance.
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The classification task was organized as a multiclass problem five
classes, each representing one of the five types of tympanograms. After
many experimental tests, the LSTM was built with these layers: the input
from the tymp-OM dataset are first passed through the LSTM layer, which
consists of 64 units designed to capture patterns inherent in the data. The
output from the LSTM layer is then forwarded to a Dense layer with 32
units, where higher-level feature abstraction begins. This is followed by a
subsequent Dense layer with 16 units that further refines the representation.
Finally, the output is passed to the last Dense layer containing 5 neurons

with a softmax activation function.

The model computes the sparse categorical cross-entropy loss
between the predicted probabilities and the true class labels, and the
backpropagation algorithm adjusts the weights throughout the network
using gradients calculated via the Adam optimizer. This process is repeated
iteratively for 50 epochs to minimize the loss and improve classification

accuracy.

Table (3.2) and Table (3.3) show the hyperparameters of ABC and the
hyperparameter values that ABC will find the best values for LSTM,
respectively. In this work, the ABC algorithm is employed to optimize the
hyperparameters of LSTM model (learning rate and activation function).
The learning rate is an important hyperparameter in neural network training
because it determines the step size in updating weights. Activation functions
control the nonlinear nature of information flow within the network. These
two hyperparameters were chosen to reduce computational complexity.
However, if all hyperparameters were included, the search would be very

large. Therefore, focusing on these two hyperparameters quickly yields
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tangible results. The approach simulates the collective foraging behavior of
honey bee colonies to effectively balance exploration and exploitation

during the search process.

Four independent colonies are executed in parallel, each initialized
with a random population of 10 candidate learning rates, 10 candidate
activation functions, and with a number of iterations of 5. The fitness
function used is a LSTM model where the fitness value is the validation
accuracy after the LSTM model trains on the training dataset using a

candidate of learning rate and activation function.

Table 3.2: The hyperparameters of ABC algorithm.

Name Values
Number of Colonies Working in 4
Parallel
Population of learning rates and 10 for each

activation functions

ABC iterations

Number of Generated Bees for Elite 3
(N2)
Number of Generated Bees for 2
Moderate (N1)
Neighbourhood Value (N) 0.01
Middle location of bee population 10
(M)
Fitness Function Validation Accuracy

Table 3.3: The hyperparameter values that ABC finds for an LSTM.

Name Values
Learning Rate [0.0001, 0.1]
Activation Function (relu, linear, leaky_relu, tanh)

61



Chapter Three Research Methodology

Within each colony, the search process iteratively partitions the
population based on fitness. The top-performing half of the population
undergoes a secondary partitioning based on the average fitness to
distinguish elite and moderate candidates. Elite candidates are subjected to
a more intensive local search, generating multiple new learning rates within
a defined neighborhood range and multiple new activation functions, while
moderate candidates undergo a less intensive local search. Meanwhile, the
lower-performing half of the population is entirely replaced by newly
generated random candidates to maintain diversity and avoid premature

convergence.

After each round of exploitation and exploration, all candidates are
merged and sorted according to their updated fitness, and the best solution

is continuously tracked across iterations.

This iterative process is repeated for a predefined number of cycles,
with the parallel execution of multiple colonies further enhancing the global
search capability and robustness of the optimization process. The steps of
the approach, as illustrated in Figure (3.8), represent the stages of hybrid
methods, which integrated LSTM with ABC. The output of these steps is a

trained LSTM having the best learning rate and activation function.

1. Initialization Phase:

e Randomly generate an initial population (bees) of learning rates in
range of [0.0001, 0.1] and activation functions in four types (relu,
linear, leaky relu, tanh).

e Train the LSTM model using each learning rate and activation

function.
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e Evaluate each model on a validation dataset and record the
accuracy (fitness values).
2. Population Partitioning:

e Sort all learning rate and activation function solutions based on
validation accuracy.

e Divide the population into two groups:

» High-performing bees (top M bees, where M is the
centre location of the list resulted from the initialization
phase).

» Low-performing bees (remaining bees).

3. Secondary Partitioning of High-performing Bees:

e Compute the average validation accuracy of the high-
performing bees.

e Split high-performing bees into:

= Elite bees (above-average accuracy).

= Moderate bees (below-average accuracy)

4. Neighborhood Search (Exploitation):

e Parameters used are:

e Neighbourhood value (N): It defines the range of each learning
rate solution within which new learning rate solutions are
generated during the local search process. The range is in
shape [LR - N, LR + N] where N = 0.01 is the Neighbourhood
value and LR is the learning rate that responsible to generate

new solutions.
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e N2: It specifies the number of new learning rates and new
activation functions to generate performed for each in elite
bees during exploitation.

e NI1: It specifies the number of new learning rates and new
activation functions to generate performed for each in
moderate bees during exploitation, where the N2 > N1

e For each bee in the elite bees, generate N2 = 3 learning rates
within the neighbourhood range and N2 = 3 activation
functions.

e For each bee in the moderate bees, generate N1 = 2 learning
rates within the neighbourhood range and N1 = 2 activation
functions.

5. New Random Generation (Exploration):

e Completely replace the low-performing bees with new
randomly generated bees (learning rates in range of [0.0001,
0.1] and activation functions in the types of relu, linear,
leaky relu, or tanh) to encourage exploration.

6. Merging and Sorting:
e Merge elite bees, moderate bees, and newly generated bees.
e Sort the entire population based on validation accuracy.
7. lIteration Control:
e Repeat steps 2—6 for a predefined number of iterations.
8. Best Solution Tracking:
e Continuously update and record the best-performing bee that

get the best validation accuracy across all iterations.
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Figure 3.8: steps of combine ABC and LSTM

The advantage of using ABC with LSTM is that it is more intelligent

for exploration and exploitation, yielding better results than using random

values or manually tuning hyperparameters. The reason for choosing this

range of values for the learning rate and activation function in the

initialization phase is to explore the widest possible range of learning rate

values and the most commonly used activation functions in neural

networks.

3.6 Model Evaluation

After concluding up the work technique, the suggested model's

performance evaluation is presented. This thesis evaluates the proposed

system based on a variety of standard metrics such as accuracy, precision,

recall, and F1 were covered in detail in Chapter Two.
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Chapter Four

Results and Discussion

4.1 Introduction

This chapter presents the experimental and evaluation results of
different deep learning models for the classification of OM diseases. At
first, the thesis displays the result of the proposed model (ABC-LSTM)
performance. The experimental findings for several methods, such MLP,
CNN, LSTM, ABC-MLP, and ABC-CNN on (Tymp-OM) dataset are shown
in section (4.3). Section (4.4) displays the comparison the proposed model
(ABC-LSTM) with MLP, CNN, LSTM, ABC-MLP, and ABC-CNN. In
section (4.5) the suggested method ABC-LSTM is also compare with

previous works for classification OM diseases.

4.2 Results Analysis of Proposed Model
After the ABC ended its iterations, the Colony ID = 4 had the trained

LSTM with the optimal learning rate and optimal activation function.

This configuration yielded a learning rate of 0.0991, with the best
activation function being ReLU. The outcome of this configuration yielded
a validation accuracy of 96.15%. The training process's performance is
illustrated in Figure (4.1), displaying the trends of training loss and training

accuracy over 50 epochs, respectively.

The initial training loss is elevated, but it experiences a significant
decline in the early epochs. The decline persists gradually, ultimately

reaching a stable low value. The ongoing decrease in loss demonstrates the
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model's capacity to efficiently reduce error and enhance prediction accuracy

as time progresses.

Simultaneously, the training accuracy demonstrates a steady rise
across the epochs. The model demonstrates significant enhancement in the
early stages of training and continues to show consistent advancement. The
observed increase in accuracy, along with the declining loss curve, suggests

robust model convergence and consistent learning stability.

Training loss and accuracy
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Figure 4.1: Training plot for accuracy and loss for the ABC-LSTM.

The model underwent evaluation on the independent test dataset to
determine its generalization capability. The model demonstrated an
impressive overall accuracy of 95.96% on the test set, reflecting robust
predictive capabilities. The precision stood at 96.11%. The recall achieved
was 96.32%. The F1-score reached 96.16%, indicating reliable performance
across imbalanced classes. The training and testing accuracies of the ABC-

LSTM model are very close. This small difference indicates that the model
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generalizes well to unseen data and does not exhibit overfitting, suggesting
that the ABC optimization successfully tuned the learning rate and
activation function to balance model complexity and generalization. Figure
(4.2) shows the confusion matrix of ABC-LSTM. The confusion matrix
shows that most errors occur between class A (normal) and class As

(otosclerosis).

Confusion Matrix
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Figure 4.2: The confusion matrix of ABC-LSTM.

This is expected because these two tympanogram types have similar
pressure distributions and peak shapes. In clinical terms, As is a slightly
flattened version of A, so the extracted numerical features, like pressure,
overlap in range. As a result, the model occasionally confuses borderline
cases where the tympanogram curve exhibits mild stiffness but still retains

near-normal pressure behavior. This reflects the real diagnostic challenge
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even for human specialists. The proposed model (ABC-LSTM) performs

well, with most predictions correctly aligned along the diagonal.

4.3 Experimental Results of Other Techniques

The section focuses on the performance of various deep learning
architectures (MLP, CNN, and LSTM), and ABC optimization with MLP
and CNN.

4.3.1 MLP Results
In Table (4.1) illustrates the hyperparameters used of 4-layer MLP

architecture. SGD and Adam were used because they are the most widely
used optimizers in neural networks. For SGD with the using of the learning
rate of 0.09, a batch size of 32, and training over 50 epochs, the model
achieved test accuracy of 95.77%, precision of 95.86%, recall of 95.99%,
and Fl-score of 95.92%. while, MLP with Adam achieved test accuracy of
95.48%, precision of 95.57%, recall of 95.72%, and F1-score of 95.63% by
using a learning rate of 0.05, a batch size of 32, and training over 50

epochs.

The performance disparity between SGD and Adam in the MLP
outcomes 1s negligible. This minor enhancement of SGD can be ascribed to
its stable convergence characteristics, which may have aligned more well
with the data distribution compared to Adam's adaptive updates.
Nonetheless, considering the minimal disparity and the overall convergence
resemblance, the difference signifies ordinary random fluctuation rather
than a significant performance superiority. The confusion matrix of MLP
with SGD and MLP with Adam are shown in appendix. The loss and
accuracy curves for training and validation of the MLP with SGD and MLP
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with Adam are illustrated in Figure (4.3). The loss decrease sharply during

the initial epochs and gradually converge.

Table 4.1: Configurations of MLP.

Name Values / Details
Loss Function Sparse Categorical Cross-Entropy
Optimizers SGD (momentum = 0.9), Adam
Learning Rates 0.09, 0.05
Epochs 50
Batch Sizes 32

Learning Rate Decay

Multiply by 0.9 each epoch

4-Layer MLP

1. Dense (64 units, ReL.U),
2. Dropout (rate = 0.2),

3. Dense (32 units, ReLU),
4. Dense (5 units, Softmax)
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Figure 4.3: The training and validation plot for accuracy and loss for the
MLP.

4.3.2 CNN Results

The Table (4.2) illustrates the hyperparameters used of 6-layer CNN

architecture with training over 150 epochs. The CNN that used SGD

achieved test accuracy of 76.06% by using a learning rate of 0.09, a batch
size of 32, the model achieved precision of 76.74%, recall of 77.01%, and
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Fl-score of 76.69%. The CNN that used Adam achieved test accuracy of
76.92% by using a learning rate of 0.01, a batch size of 16. The model
achieved precision of 77.22%, recall of 77.89%, and F1-score of 77.36.

Table 4.2: Configurations of CNN.

Name Values / Details
Loss Function Sparse Categorical Cross-Entropy
Optimizers SGD (momentum = 0.9), Adam
Learning Rates 0.09, 0.01
Epochs 150
Batch Sizes 32,16
Learning Rate Decay | Multiply by 0.9 each epoch
6-Layer CNN 1. ConvlD (32 filters, ReLU)
2. MaxPooling1D (2 pool_size)
3. Conv1D (16 filters, ReLU)
4. Flatten()
5. Dense (64 units, ReLU)
6. Dense (5 units, Softmax)

The low CNN accuracy in SGD and Adam may be due to a learning
rate, which, using this learning rate, likely caused unstable weight updates,
preventing proper convergence. The explanation for Adam's better results
than SGD is that Adam adapts to the characteristics of the data and

gradients during training.

The confusion matrix of CNN with SGD and CNN with Adam are
shown in the appendix. The loss and accuracy curves for training and
validation of the CNN with SGD and CNN with Adam models are
illustrated in Figure (4.4). The loss decrease sharply during the first epochs.
The loss and accuracy curves stabilize around epochs 50, indicating that the

models have reached their maximum learning ability.
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Figure 4.4: The training and validation plots for accuracy and loss for the
CNN.

4.3.3 LSTM Results

The Table (4.3) introduces the hyperparameters used of 3-layer
LSTM architecture with training over 100 epochs. The LSTM that used
SGD achieved test accuracy of 95.77% by using a learning rate of 0.09, a
batch size of 16.The model achieved precision of 95.92%, recall of 96.16%,
and F1-score of 95.97%. The LSTM that used Adam achieved test accuracy
of 95.77% by a learning rate of 0.05, a batch size of 32. The model
achieved precision of 95.91%, recall of 96.09%, and F1-score of 95.98%.
The confusion matrix of LSTM with SGD Adam are shown in appendix.
The loss and accuracy curves for training and validation of the LSTM with
SGD and LSTM with Adam models are illustrated in Figure (4.5). The loss

and accuracy curves over the course of 100 training epochs.

The loss decreases sharply during the initial epochs and gradually
converges in LSTM with SGD, while the validation loss in LSTM with
Adam has increases in the last epochs, which means there is an overfitting.
The rise in validation loss post-epoch 20 using the Adam optimizer signifies

the commencement of overfitting, as the model enhances performance on
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training data but deteriorates in generalization to unseen data. This
transpires when Adam aggressively adjusts learning rates, facilitating swift
convergence while simultaneously increasing the risk of overfitting. Early
stopping can be utilized to terminate training when validation loss ceases to
improve. The low training loss and a high validation loss are typical

relationships for overlearning where the model memorizes the training data.

Table 4.3: Configurations of LSTM.

Name Values / Details
Loss Function Sparse Categorical Cross-Entropy
Optimizers SGD (momentum = 0.9), Adam
Learning Rates 0.09, 0.05
Epochs 100
Batch Sizes 16, 32
Learning Rate Decay | Multiply by 0.9 each epoch
3-Layer LSTM 1. LSTM (64 units, ReLU)
2. Dense (32 units, ReLU)
3. Dense (5 units, Softmax)
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Figure 4.5: The training and validation plots for accuracy and loss for the
LSTM.
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4.3.4 ABC-MLP Results

The trained MLP model, utilizing the optimal learning rate and
activation function identified through the ABC optimization algorithm,
demonstrated its peak performance in Colony ID = 1, achieving a learning
rate of 0.03925 and employing the ReLU activation function. The
configuration achieved a validation accuracy of 94.71%, showcasing the
efficacy of the ABC algorithm in optimizing hyperparameters for deep

learning applications.

The training process's performance is illustrated in Figure (4.6), showcasing
the trends of training loss and training accuracy over 50 epochs,

respectively.

Training loss and accuracy

0.8 1

0.2 1

Figure 4.6: Training plots for accuracy and loss for the ABC-MLP.
The initial training loss is elevated, followed by a significant decline
in the early epochs. The decline persists gradually, ultimately reaching a
stable low value. The ongoing decrease in loss demonstrates the model's
proficiency in minimizing error and enhancing prediction accuracy as time

progresses.
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Simultaneously, the training accuracy demonstrates a steady rise
across the epochs. The model demonstrates significant enhancement in the
early stages of training and continues to show consistent advancement. The
increase in accuracy alongside the declining loss curve suggests robust

model convergence and consistent learning stability.

Following the training phase, the ABC-MLP was evaluated on the
independent test dataset to assess its generalization ability. The model
achieved an overall accuracy of 95.48% on the test set, indicating strong
predictive performance. The model achieved precision of 95.57%, recall of
95.82%, and F1-score of 95.66%. The confusion matrix of ABC-MLP is

shown in appendix.

Although ABC has not shown significant superiority in terms of
performance indicators, its real value lies in automating the process of
selecting hyperparameters, which reduces the need for lengthy manual
experimentation and saves effort and time in building models. Therefore,
ABC is a complement to MLP in improving tuning, rather than a means of

achieving a quantum leap in performance accuracy.

4.3.5 ABC-CNN Results

The trained CNN model using the optimal learning rate and optimal
activation function found by the ABC optimization algorithm achieved its
highest performance in Colony ID = 2, which produced the best learning
rate of 0.01349 and best activation function is ReLU. This configuration
resulted in a validation accuracy of 93.99%, demonstrating the effectiveness
of the ABC algorithm in fine-tuning hyperparameters for deep learning

tasks. The performance of the training process is depicted in Figure (4.7),
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which illustrate the training loss and training accuracy trends over 50
epochs, respectively. The training loss starts at a high value and sharply
decreases during the early epochs. It then continues to decline gradually,

eventually stabilizing at a low value.

This consistent reduction in loss reflects the model’s ability to
effectively minimize error and improve prediction accuracy over time. In
parallel, training accuracy shows a continuous increase in throughout the

epochs.

The model exhibits rapid improvement during the initial training
phase and maintains steady progress. This upward trend in accuracy,
coupled with the decreasing loss curve, indicates strong model convergence

and learning stability.
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Figure 4.7: Training plots for accuracy and loss for the ABC-CNN.
Following the training phase, the ABC-CNN was evaluated on the
independent test dataset to assess its generalization ability. The model
achieved an overall accuracy of 94.23% on the test set, indicating strong

predictive performance. The model achieved precision of 94.54%, recall of
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94.79%, and Fl-score of 94.46%. The confusion matrix of ABC-CNN is

shown in Appendix section.

After reviewing the ABC-CNN results, the importance of ABC lies in
increasing the accuracy of CNN. Without ABC, the accuracy and results of
CNN showed poor results. However, ABC worked on finding the best

hyperparameters, especially the learning rate, to greatly improve the results.

4.4 Comparison ABC-LSTM vs Other Techniques

Table (4.4) presents the comparison classification of the proposed
model (ABC-LSTM) with MLP, CNN, LSTM—trained using two different
optimization algorithms: SGD and Adam and the against the performance of
ABC-MLP, ABC-CNN using different measures. The MLP model achieved
its highest accuracy of 95.77% when trained with SGD, slightly
outperforming the Adam optimizer, which yielded 95.48%. In contrast, the
CNN model showed lower performance overall, reaching 76.06% accuracy

with SGD and a marginally higher 76.92% with Adam.

Table 4.4: Comparison results between ABC-LSTM with other techniques

Model Accuracy | Precision | Recall | F1-Score | Training
Time
MLP with 95.77 % 95.86% 95.99% 95.92% 25
SGD Second
MLP with 95.48 % 95.57% 95.72% 95.63% 30
Adam Second
CNN with 76.06 % 76.74% 77.01% 76.69% 92
SGD Second
CNN with 76.92 % 77.22% 77.89% 77.36% 94
Adam Second
LSTM with 95.77 % 95.92% 96.16% 95.97% 90
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SGD Second
LSTM with 95.77 % 95.91% 96.09% 95.98% 84
Adam Second
ABC-MLP 95.48 % 95.57% 95.82% 95.66% 4418
Second
ABC-CNN 94.23 % 94.54% 94.79% 94.46% 6640
Second
Proposed 9596 % | 96.11% 96.32% | 96.16% 5724
model ABC- Second
LSTM

The LSTM model demonz2102strated strong and consistent
performance, achieving 95.77% accuracy with both optimizers. The ABC-
MLP and ABC-CNN models achieved an accuracy of 95.48 % and 94.23%,
respectively. Meanwhile, the ABC-LSTM model reached the highest
accuracy of 95.96%, outperforming all other default models, ABC-MLP,
and the ABC-CNN. This is indicating the effectiveness of the ABC
algorithm in tuning deep learning models. In addition, this comparison
demonstrates that integrating swarm intelligence, such as ABC, into the
training process can enhance model performance, particularly for recurrent

architectures like LSTM.

ABC did not markedly enhance MLP performance, as MLP models
exhibit reduced sensitivity to minor hyperparameter fluctuations due to their
simplistic ~ structure and absence of intricate interconnections.
Consequently, ABC optimization has little capacity for additional
performance improvement. Conversely, models such as CNN and LSTM
encompass a greater number of hyperparameters and non-linear
interactions, rendering them more amenable to ABC’s optimization method,

which can more effectively fine-tune learning rates and activation functions
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for these intricate architectures. It can be concluded that using ABC is more
time-consuming and computationally complex due to the large search

operations required to obtain the best hyperparameters for each model.

4.5 Comparison with Previous Studies

Table (4.5) offers a comparative analysis for the proposed ABC-
LSTM model using the Tymp-OM dataset of 5196 samples and 5 classes
with previously published studies on tympanometry classification. The
proposed model achieved a markedly higher accuracy of 95.96%,
outperforming all prior approaches in the literature. For instance, studies
such as Sundgaard et al. (2022) [83] and Binol et al. (2020) [92], which
employed CNN and ensemble methods, used a dataset of 1014 images (2
classes) and 73 videos (2 classes), respectively, and reported accuracies of
92.6% and 84.9%, respectively. The VGG16 model by Caliskan (2022)
[93], which used 956 images (2 classes), reached 82.17%, still significantly
below the proposed model’s performance. From the results, the proposed
model (ABC-LSTM) in our study achieved better results when comparing

with previous studies.

Table 4.5: Comparison the proposed ABC-LSTM with previous studies.

Paper Model No. of Dataset Size Metrics
classes
[83] CNN 2 1014 images = Accuracy: 92.6%
F1-Score: 92.6%
[92] Majority voting 2 73 videos Accuracy: 84.9%
[93] VGG16 2 956 images | Accuracy: 82.17%
F1-Score: 77.92%
This ABC-LSTM 5 5196 records ' Accuracy: 95.96%
study F1-Score: 96.16%
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Chapter Five

Conclusion and Future Works

5.1 Introduction

This chapter encapsulates the research findings of the thesis and
delineates the prospective avenues for further inquiry in this domain.
Section (5.2) examines the benefits of the thesis; the research findings are

delineated in Section (5.3), and future work are shown in Section (5.4).

5.2 Research Benefit

This thesis offers significant contributions to both the medical and
computational fields by presenting a reliable classification for OM diseases
based on tympanometry data to help in the diagnosis of OM. The thesis
bridges the gap between accessible healthcare and advanced diagnostic
tools by enabling accurate classification of OM diseases using deep learning

model.

By achieving high classification accuracy, particularly with
lightweight architecture by using low number of layers for the LSTM, the
methodology is well-suited for deployment in low-resource or non-
specialist environments, such as rural clinics or primary care settings.
Furthermore, the novel dataset and the methodology establish a foundation

for future research and development in medical Al for OM.

5.3 Conclusion

This thesis set out to address the critical need for an accessible,

reliable, and automated method to classify OM diseases to help in
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diagnosing OM, particularly in non-specialist and resource-limited clinical
settings. By leveraging deep learning models, the ABC optimization
algorithm, and a novel dataset of 1,808 tympanometric readings with 5
classes from 892 patients, this thesis demonstrated the efficacy of a ABC-

LSTM based classification model using tabular tympanometric data.

Preprocessing techniques were applied on the final dataset ( name of
data and size), comprising categorical encoding, standardization, and class
balancing. The proposed methodology introduced a hybrid method of
LSTM with ABC algorithm to identify the optimal learning rate and optimal
activation function, addressing a key challenge in deep learning model

optimization.

The proposed ABC-LSTM achieved strong convergence behavior
and high accuracy (95.96%) on test data, with performance metrics such as
precision, recall, and Fl-score further confirming the model’s robustness

and ability to generalize across all five tympanogram classes.

The results show the extent and strength of the proposed model
(ABC-LSTM) with the ability to classify OM diseases. The proposed
methodology exhibited robust performance; yet, some restrictions must be

recognized.

The dataset, while clinically significant, is moderate in size (1,808
records), perhaps constraining the model's exposure to uncommon
tympanogram patterns and marginally hindering generalization. Although
preprocessing and SMOTE enhanced data balance, augmenting the dataset

with a broader array of clinical cases would bolster robustness.
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5.4 Future work

Future research can extend this work in several promising directions:

e Increasing the numbers of test samples will enable the evaluation of a
higher number of tympanometry data with good results and good
performance.

e Deploying the proposed model as a mobile application or a web
browser to increase its use by ordinary users.

e Developing the proposed method to make it a powerful tool for
classifying the largest possible number of categories.

e Implement the suggested model to any extra local datasets.
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