Course Description Form

Course Description Form							
1. Course Name:							
Subjects in Geometry							
2. Course Code:							
MATH-3011							
3. Semester / Year:							
Second Semester/Third Year							
4. Description Preparation Date:							
27 March 2024							
5. Available Attendance Forms:							
Classroom or electronic by Web							
6. Number of Credit Hours (Total) / Number of Units (Total)							
60 Hours/3 credits							
7. Course administrator's name (mention all, if more than one name)							
Name: Azher Abbas Mohammad							
Email:drazh64@tu.edu.iq							
8. Course Objectives							
1. Students must realize basic concepts in Euclidean geometry.							
2. Learning a student's haw the Axiomatic system work with its contents, postulates, theorems, exercises.							
3. Students must know a philosophy of Euclidean and non- Euclidean geometry.							
4. Developing the ability of students in treat with a non-Euclidean geometry such as points, lines, surfaces, spaces which takes its meaning from the axiomatic system.							
5. Providing students with experience and skills in treatment with the concepts in hyperbolic and Elliptic geometry							
6. Providing students with experience and skills in treatment with the concepts in hyperbolic and Elliptic triangles and the triangular relations for them.							

9. Teaching and Learning Strategies

This course characterized that it represent one of the three mathematical structures which is geometrical structure. So the learning strategy based on

training the student to expand his imaginative understanding to comprehended concepts of non-Euclidean geometries that contradict each other .This comes by helping the students to imagine a non-planer spaces such as Poincare and Riemann spaces that deals with a different concepts of parallelism and Orthogonality and deals with a non-Euclidean triangles. Then the focus will be on following up with students by assigning them some home works and discussing solutions and proofs in each lecture in order to adopting proof methods based on axiomatic system and the mathematical thinking approach and adopting several methods to evaluate the extent of students understanding of the scientific material based on oral scientific discussion and some quizzes, in addition to two quarterly tests during the semester.

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation		
		Outcomes	name	method	method		
1	4	Learn about the history of geometry and its origins	geometry and Euclidean Axiomatic	Theoretical Lecture and discussion	Oral tests and quizzes		
2	4	Concepts of axiom, postulate and axiomatic systems	system Hilbert Axiomatic system	Theoretical Lecture and discussion	Oral tests and quizzes		
3	4	Dealing with the most important concepts of circles	The power of a point with respect to a circle , pencil of hyperbolic and elliptic circles	Theoretical Lecture and discussion	Oral tests and quizzes		
4	4	Inversion concept with respect to a circle	Inversion , inversion relations and some theorems and exercises	Theoretical Lecture and discussion	Oral tests and quizzes		
5	4	Cross ratio concept	Cross ratio of collinear four points on a line definitions and properties	Theoretical Lecture and discussion	Oral tests and quizzes		
6	4	Developing of non- Euclidean concepts in geometry	Fifth Euclidean	Theoretical Lecture and discussion	Oral tests and quizzes		
7	4	Haw to measure a hyperbolic distance in Poincare space	Hyperbolic distance between two points in Poincare space	Theoretical Lecture and discussion	Oral tests and quizzes		
8	4	Learning a parallelism concept in Poincare space		Theoretical Lecture and discussion	1 st Midterm exam in previous weeks(1-7)		
9	4	Haw to measure a vertical hyperbolic distance	Hyperbolic vertical distance and angle of parallelism	Theoretical Lecture and discussion	Oral tests and quizzes		

10. Course Structure

10	4	Recognition the	Hyperbolic right	Theoretical	Oral tests and
		relation between the	triangle, relation	Lecture and	quizzes
		elements of hyperbolic	between its elements	discussion	
		right triangle	with examples		
11	4	Recognition the	Hyperbolic oblique	Theoretical	Oral tests and
		relation between the	triangle, relation	Lecture and	quizzes
		elements of hyperbolic	between its elements	discussion	
		oblique triangle	with examples		
12	4	Identifying the	Introduction in elliptic	Theoretical	Oral tests and
		axiomatic system of	geometry and Riemann	Lecture and	quizzes
		elliptic geometry	unite sphere and	discussion	
			stereographic		
			projection		
13	4	Haw to calculate a	The elliptic distance	Theoretical	Oral tests and
		elliptic distance on	between two points on	Lecture and	quizzes
		Riemann Sphere	Riemann sphere and its	discussion	
			projection in a plane		
14	4	Recognition the	Elliptic right triangle	Theoretical	Oral tests and
		relation between the	,relation between its	Lecture and	quizzes
		elements of elliptic	elements with	discussion	
		right triangle	examples		
15	4	Recognition the	Elliptic oblique triangle	Theoretical	2 nd Midterm
		relation between the	,relation between its	Lecture and	exam
		elements of elliptic	elements with	discussion	
		oblique triangle	examples		

11. Course Evaluation

Couse evolution of a student including the sum of the following two parts

- 1. Formative Evalution 40%
 - (2 exams through the term 30% and Oral discussion 5% and Quizzes 5%)
- 2. Summative Evalution

(Final Exam 60%)

12. Learning and Teaching Recourses

Required textbook(Curricular book, if any): امال شهاب العطار, " مفاهيم اساسية في الهندسة", دار الحكة للطباعة والنشر – بغداد 1992

Main References (Sources):

عبد الوهاب احمد السراج ,"نظم البديهيات والهندسة " , مطابع جامعة الموصل 1985

ملزمة من اعداد ا.م. يحيى عبد سعيد من كلية التربية جامعة الموصل

Recommended book and references (Scientific journals, reports,...):

خالد احمد السامرائي, " الهندسة الحديثة", مطابع التعليم العالي – بغداد – 1988

Electronic Reference ,Web sites:

كتاب الهندسة اللااقليدية ومصادرة اقليدس الخامسة

https://www.alfreed-ph.com/2018/03/No-Euclid-Engineeringpdf.html#google_vignette