
1

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title Programming Fundamentals Module Delivery

Module Type Core ☒ Theory

 ☒ Lecture

 ☒ Lab

 ☒ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code TUCS110

ECTS Credits 6

SWL (hr/sem) 200

Module Level 1 Semester of Delivery 2nd

Administering Department Computer Science College CCSM

Module Leader Mohamed Taheer Ahmed e-mail Mohanad.H.Ramadhan@tu.edu.iq

Module Leader’s Acad. Title Assistant Lecturer Module Leader’s Qualification master

Module Tutor e-mail

Peer Reviewer Name Mahammed Aktham e-mail

Scientific Committee Approval

Date
07/06/2023 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module None Semester

Co-requisites module None Semester

2

Module Aims, Learning Outcomes and Indicative Contents

الإرشاديةأهداف المادة الدراسية ونتائج التعلم والمحتويات

 Module Aims

 أهداف المادة الدراسية

The aim of this module is to introduce students to the fundamental concepts of

algorithms, algorithm design, and problem-solving techniques. The module will

cover various algorithmic paradigms, data structures, and analysis methods to

equip students with the skills necessary for designing and analyzing algorithms

effectively.

Module Learning

Outcomes

 مخرجات التعلم للمادة الدراسية

1. Understand the importance of algorithms in computer science and the

significance of algorithmic problem-solving.

2. Design algorithms using flowcharts and pseudocode, and implement them using

programming constructs such as flow control statements and loops.

3. Analyze the time and space complexity of algorithms using Big O notation and

asymptotic analysis.

4. Implement and utilize basic data structures such as arrays, strings, stacks, and

queues for algorithmic problem-solving.

5. Apply various sorting and searching algorithms, including bubble sort, selection

sort, insertion sort, quicksort, mergesort, heapsort, linear search, binary search,

depth-first search, and breadth-first search.

6. Utilize string algorithms for pattern matching and string manipulation tasks.

7. Demonstrate the ability to review and evaluate projects related to algorithm

design and implementation.

Indicative Contents

 المحتويات الإرشادية

1. Introduction to algorithms: Understanding the role and significance of

algorithms in computer science.

2. Algorithmic problem-solving: Exploring strategies and techniques for solving

computational problems effectively.

3. Algorithm design: Drawing flowcharts and writing pseudocode to represent

algorithmic solutions.

4. Flow control: Implementing flow control statements (if-else, switch-case) for

decision-making in algorithms.

5. Loops: Utilizing loops for repetitive tasks, including counter and cumulative

variables, and nested loops.

6. Complexity analysis: Analyzing the time and space complexity of algorithms

using Big O notation and asymptotic analysis.

7. Basic data structures: Introduction to arrays, strings, stacks, and queues for

storing and manipulating data.

8. Sorting algorithms: Implementing and analyzing sorting algorithms such as

bubble sort, selection sort, insertion sort, quicksort, mergesort, and heapsort.

9. Searching algorithms: Implementing and analyzing searching algorithms such as

linear search, binary search, depth-first search, and breadth-first search.

10. String algorithms: Exploring algorithms for pattern matching and string

manipulation tasks.

11. Reviewing students' projects: Providing feedback and evaluation on projects

related to algorithm design and implementation.

3

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

Lectures: Traditional lectures can be used to introduce key concepts,

theories, and principles related to algorithms. Lectures should be

interactive, incorporating examples, demonstrations, and real-world

applications to illustrate abstract concepts effectively.

Group Discussions: Group discussions encourage collaborative learning

and critical thinking. Students can discuss challenging topics, share

insights, and work together to solve algorithmic problems. Group

discussions also promote communication skills and teamwork.

Problem-Solving Sessions: Dedicated problem-solving sessions allow

students to practice applying algorithmic techniques to solve a variety of

problems. These sessions can involve solving algorithmic puzzles, coding

challenges, and algorithm design exercises individually or in groups.

Practical Coding Assignments: Assigning practical coding assignments

allows students to implement algorithms and data structures in

programming languages of their choice. Through coding assignments,

students gain hands-on experience with algorithm implementation,

debugging, and optimization.

Case Studies: Case studies provide real-world examples of how algorithms

are used to solve practical problems in various domains, such as finance,

healthcare, and engineering. Analyzing case studies helps students

understand the relevance and applicability of algorithms in different

contexts.

Student Workload (SWL)

 أسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
92

Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
6.13

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
108

Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
7.2

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
200

4

Module Evaluation

 تقييم المادة الدراسية

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 11 #LO 1-3, #LO 5-8

Assignments 2 10% (10) 7, 12 #LO 3-5, #LO 5-8

Projects 1 10% (10) continuous

Report 1 10% (10) 14 #LO 1-8

Summative

assessment

Midterm Exam 2 hr 10% (10) 11 #LO 1-7

Final Exam 2 hr 50% (50) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Week No. Material Covered

Week 1 Importance of algorithms in computer science

Week 2 Importance of algorithmic problem-solving

Week 3 Algorithms Design Drawing Flowchart and Writing pseudocode

Week 4 Flow Control (if-else), (switch – case)

Week 5 Loops (counter and cumulative variables), Nested Loops

Week 6
Time complexity analysis (Big O notation), Space complexity analysis and

Asymptotic analysis

Week 7 Midterm exam

Week 8 Basic Data Structures: Arrays, Strings, Stacks, Queues.

Week 9 Sorting Algorithms: Bubble sort, selection sort, insertion sort

Week 10 Sorting Algorithms: Quicksort, mergesort, heapsort

Week 11 Searching Algorithms: Linear search, binary search

Week 12 Searching Algorithms: Depth-first search, breadth-first search

Week 13 String Algorithms: Pattern matching algorithms

Week 14 String Algorithms: String manipulation techniques

Week 15 Reviewing Students’ Projects

5

Delivery Plan (Weekly Lab. Syllabus):

 : المنهاج الاسبوعي للمختبر

Week No. Material Covered

Week 1

Introduction to Algorithm Design

Overview of the course objectives and expectations

Introduction to algorithm design methodologies

Hands-on activity: Drawing flowcharts for simple algorithms

Assignment: Practice drawing flowcharts for algorithmic problems

Week 2

Review of pseudocode and its importance in algorithm design

Introduction to flow control statements (if-else, switch-case)

Hands-on activity: Writing pseudocode for algorithmic problems

Assignment: Implementing algorithms using flow control in a programming language

Week 3

Understanding loop structures and their importance in algorithms

Hands-on activity: Implementing loops for counter and cumulative variables

Introduction to nested loops

Assignment: Solving algorithmic problems using nested loops

Week 4

Time Complexity Analysis

Introduction to time complexity analysis using Big O notation

Understanding the concept of asymptotic analysis

Hands-on activity: Analyzing the time complexity of algorithms

Assignment: Analyzing the time complexity of sorting algorithms

Week 5

Space Complexity Analysis

Introduction to space complexity analysis

Hands-on activity: Analyzing the space complexity of algorithms

Assignment: Analyzing the space complexity of searching algorithms

Week 6

Basic Data Structures

Introduction to arrays, strings, stacks, and queues

Hands-on activity: Implementing basic data structures in a programming language

Assignment: Implementing algorithms using basic data structures

Week 7

Sorting Algorithms

Introduction to sorting algorithms: bubble sort, selection sort, insertion sort

Hands-on activity: Implementing sorting algorithms

Assignment: Comparing the performance of different sorting algorithms

Week 8

Sorting Algorithms (continued)

Introduction to more advanced sorting algorithms: quicksort, mergesort, heapsort

Hands-on activity: Implementing advanced sorting algorithms

Assignment: Optimizing sorting algorithms for different datasets

Week 9

Searching Algorithms

Introduction to searching algorithms: linear search, binary search

Hands-on activity: Implementing searching algorithms

Assignment: Analyzing the performance of searching algorithms

Week 10

Graph Algorithms

Introduction to graph algorithms: depth-first search, breadth-first search

Hands-on activity: Implementing graph traversal algorithms

Assignment: Solving graph-related problems using depth-first search and breadth-first search

Week 11

String Algorithms

Introduction to string matching algorithms

Hands-on activity: Implementing pattern matching algorithms

Assignment: Applying string manipulation techniques to solve algorithmic problems

6

Week 12 Review and Project Work

Week 13

Project Work and Consultation

Project work: Students continue working on their projects

Individual consultations with the instructor for project guidance and feedback

Week 14

Project Presentation Preparation

Preparation for project presentations

Practice sessions for project presentations

Final touches on project implementations and documentation

Week 15 Project Presentations

Learning and Teaching Resources

 مصادر التعلم والتدريس

 Text
Available in the

Library?

Required Texts
Introduction to Algorithms, Third Edition By Thomas H.

Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford

Stein

No

Recommended Texts Introduction to Algorithmic Design and Analysis No

Websites

 Grading Scheme

 مخطط الدرجات
Group

Grade التقدير
Marks

(%)
Definition

Success Group

(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail)(49-45) راسب)قيد المعالجة More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

