
1

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title Programming Fundamentals Module Delivery

Module Type Core ☒ Theory

 ☒ Lecture

 ☒ Lab

 ☒ Tutorial

 ☐ Practical

 ☐ Seminar

Module Code TUCS110

ECTS Credits 8

SWL (hr/sem) 200

Module Level 1 Semester of Delivery 1st

Administering Department Computer Science College CCSM

Module Leader Mohanad Hatem Ramadhan e-mail Mohanad.H.Ramadhan@tu.edu.iq

Module Leader’s Acad. Title Assistant Lecturer Module Leader’s Qualification master

Module Tutor Yahya Laith Khalil e-mail

Peer Reviewer Name Mahammed Aktham e-mail

Scientific Committee Approval

Date
07/06/2023 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module None Semester

Co-requisites module Advanced Programming Semester 2

2

Module Aims, Learning Outcomes and Indicative Contents

المادة الدراسية ونتائج التعلم والمحتويات الإرشاديةأهداف

 Module Aims

 أهداف المادة الدراسية

 1. To introduce students to the fundamental principles and concepts of

programming.

2. To familiarize students with the syntax and structure of the C++

programming language.

3. To develop students' problem-solving skills and algorithmic thinking.

4. To enable students to design, implement, and test programs using C++ to

solve computational problems.

5. To provide students with hands-on experience in programming through

practical exercises, assignments, and projects.

6. To promote the use of modular programming techniques for creating

reusable and maintainable code.

7. To enhance students' ability to debug and troubleshoot programs effectively.

8. To develop students' communication skills in expressing programming

concepts and solutions clearly and effectively.

9. To prepare students for advanced programming courses and real-world

software development scenarios.

Module Learning

Outcomes

للمادة الدراسية مخرجات التعلم

 Upon successful completion of this module, students should be able to:

1. Demonstrate a solid understanding of the fundamental principles and concepts

of programming.

2. Utilize the syntax and structure of the C++ programming language to write

well-structured and efficient code.

3. Apply problem-solving skills and algorithmic thinking to develop solutions

for a variety of computational problems.

4. Design, implement, and test programs using C++ to solve specific tasks and

challenges.

5. Utilize modular programming techniques to create reusable and maintainable

code.

6. Debug and troubleshoot programs effectively using appropriate debugging

techniques and tools.

7. Collaborate and work effectively in teams to complete programming projects.

8. Communicate programming concepts, solutions, and ideas clearly and

effectively, both orally and in written form.

9. Demonstrate a readiness to progress to more advanced programming courses

or pursue a career in software development.

Indicative Contents

 المحتويات الإرشادية

3

1. Introduction to Computer Science:

 - Overview of computer science as a discipline

 - Key concepts and principles in computer science

 - Role of programming in computer science

2. Introduction to Computers, Binary System, and Information Representation:

 - Basics of computer architecture and components

 - Understanding the binary system and its significance in computing

 - Conversion between binary and decimal.

 - Representation of different data types in computers

 - ASCII and Unicode for character encoding

3. Algorithm Design and Problem Solving:

 - Understanding algorithms and problem-solving strategies

 - Analyzing problem requirements and designing algorithmic solutions

 - Time and space complexity analysis

 - Representing algorithms with Pseudocode and Flowcharts:

 - Using pseudocode as a high-level representation of algorithms

 - Writing pseudocode to describe the logic and steps of an algorithm

 - Understanding flowcharts as visual representations of algorithms

 - Basic flowchart symbols and their meanings

 - Creating flowcharts to represent the flow of control in algorithms

4. Introduction to C++:

 - History and features of the C++ programming language

 - Setting up a C++ development environment

 - Basic syntax and structure of C++ programs

5. Variables and Data Types:

 - Declaring and initializing variables

 - Fundamental data types (integers, floating-point numbers, characters)

 - Working with constants and literals

6. Operators and Expressions:

 - Arithmetic operators

 - Assignment operators

 - Comparison operators

 - Logical operators

7. Control Structures:

 - Decision-making with if-else statements

 - Switch statements for multiple choices

 - Repetition with loops (while, do-while, for)

 - Handling user input and validation

4

8. Functions:

 - Function declaration and definition

 - Parameters and argument passing

 - Return values and function overloading

 - Scope and lifetime of variables

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

1. Lectures: The instructor will deliver lectures to introduce and explain

programming concepts, C++ syntax, and problem-solving techniques. This

will provide students with a solid theoretical foundation.

2. Interactive Discussions: Engaging students in interactive discussions

allows them

to ask questions, seek clarifications, and participate actively in the learning

process. Discussions can include reviewing code examples, discussing

programming best practices, and exploring real-world applications of

programming concepts.

3. Laboratory Sessions: Laboratory sessions are dedicated practical

sessions where students apply the concepts learned in lectures to hands-

on programming exercises. Key strategies for the laboratory sessions

include:

 a. Programming Exercises: Students will work on programming exercises

and projects in the laboratory, providing them with practical experience in

coding and problem-solving.

 b. Guided Practice: Lab instructors or teaching assistants will be available

to provide guidance, assistance, and immediate feedback on students'

code. They can help students debug their programs, identify errors, and

improve their coding skills.

 c. Collaboration and Peer Learning: Students can collaborate with their

peers in the laboratory, fostering teamwork and enabling knowledge

sharing. Working together on programming tasks promotes discussions,

problem-solving, and peer learning.

5

 d. Equipment and Resource Access: The laboratory should provide access

to computers, necessary software tools, programming references, and

relevant online resources. This ensures that students have the necessary

resources to complete their lab exercises and assignments effectively.

4. Programming Assignments: Assignments will be given to students to

reinforce their understanding of programming concepts and encourage

independent problem-solving. These assignments may involve

implementing algorithms, designing software systems, or developing

small-scale projects using C++.

5. Code Reviews and Feedback: The instructor will provide feedback on

students' code, reviewing their solutions, and offering suggestions for

improvement. This feedback will help students enhance their coding skills

and adhere to best practices.

6. Office Hours and Individual Support: The instructor should be available

for individual consultations and provide support to students who need

additional help or guidance in understanding programming concepts or

completing assignments.

Student Workload (SWL)

 أسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
92

Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
6.13

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
108

Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
7.2

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
200

Module Evaluation

 تقييم المادة الدراسية

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 11 #LO 1-3, #LO 5-8

Assignments 2 10% (10) 7, 12 #LO 3-5, #LO 5-8

Projects 1 10% (10) continuous

Report 1 10% (10) 14 #LO 1-8

Summative

assessment

Midterm Exam 2 hr 10% (10) 11 #LO 1-7

Final Exam 2 hr 50% (50) 16 All

6

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Week No. Material Covered

Week 1 Introduction to Computer Science, Computers Components, Binary and Info Representation

Week 2 Algorithms Design and Writing pseudocode

Week 3 Algorithms design and Drawing Flowchart

Week 4
Introduction to Programming Languages (History, Categories, Main Differences) and,

Introduction to Programming in C++ (Program Structure and Coding Environment)

Week 5 Variables, Datatypes, Output, and Input

Week 6 Operations (Arithmetic and Assignment) and Math Functions

Week 7 Operations (Comparison and Logical)

Week 8 Flow Control (if – else)

Week 9 Flow Control (switch – case)

Week 10 Loops (counter and cumulative variables)

Week 11 Uncountable Loops

Week 12 Nested Loops

Week 13 Functions

Week 14 building a TikTacToe Game

Week 15 Reviewing Students’ Projects

Delivery Plan (Weekly Lab. Syllabus):

 : المنهاج الاسبوعي للمختبر

Week No. Material Covered

Week 1 Using Operating System, Creating Files and Folders, Writing Text)

Week 2 Difference among (Text Editor, Word Processor, Code Editor and IDE)

Week 3 Drawing (Darg and drop) Flowcharts

Week 4 Installing C++ coding environment and running Hello World program

Week 5 Running Examples on Variables, Datatypes, Output, and Input

Week 6 Running Examples on Operations (Arithmetic and Assignment) and Math Functions

Week 7 Running Examples on Operations (Comparison and Logical)

7

Week 8 Running Examples on Flow Control (if – else)

Week 9 Running Examples on Flow Control (switch – case)

Week 10 Running Examples on Loops (counter and cumulative variables)

Week 11 Running Examples on Uncountable Loops

Week 12 Running Examples on Nested Loops

Week 13 Running Examples on Functions

Week 14 Fixing problems in students’ projects

Week 15 Applying instructor’s feedback on students’ projects

Learning and Teaching Resources

 مصادر التعلم والتدريس

 Text
Available in the

Library?

Required Texts

 Stroustrup, Bjarne - Programming_ principles and

practice using C++-Addison-Wesley (2015)

Yes

Recommended Texts Olsson, Mikael - C++20 Quick syntax reference: a pocket

guide to the language, apis, and library
No

Websites

 Grading Scheme

 مخطط الدرجات
Group

Grade التقدير
Marks

(%)
Definition

Success Group

(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail)(49-45) راسب)قيد المعالجة More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

