MODULE DESCRIPTION FORM
‘\.\u\)ﬂ\ a4l LJ.».A} CJ)A.\

Module Information
mba&\ XA C'_iujlm

Module Title Programming Fundamentals Module Delivery
Module Type Core X Theory
X Lecture
Module Code TUCS110 K Lab
ECTS Credits 8 E gf;g;f;l
SWL (hr/sem) 200 [0 Seminar
Module Level 1 Semester of Delivery 1
Administering Department Computer Science College CCSM
Module Leader Mohanad Hatem Ramadhan e-mail Mohanad.H.Ramadhan@tu.edu.iq
Module Leader’s Acad. Title Assistant Lecturer Module Leader’s Qualification master
Module Tutor Yahya Laith Khalil e-mail
Peer Reviewer Name Mahammed Aktham | e-mail
gcaif:“ﬁc CRMITES AFEravEl 07/06/2023 Version Number | 1.0
Relation with other Modules
6 AV A jall 3l sall ae A8l
Prerequisite module None Semester
Co-requisites module Advanced Programming Semester 2

Module Aims, Learning Outcomes and Indicative Contents

4L5 Y1 il ginall g alail) il g A al) salall Calaa]

Module Aims

Al all saldl Calaal

1. To introduce students to the fundamental principles and concepts of
programming.

2. To familiarize students with the syntax and structure of the C++
programming language.

3. To develop students' problem-solving skills and algorithmic thinking.

4. To enable students to design, implement, and test programs using C++ to
solve computational problems.

5. To provide students with hands-on experience in programming through
practical exercises, assignments, and projects.

6. To promote the use of modular programming techniques for creating
reusable and maintainable code.

7. To enhance students' ability to debug and troubleshoot programs effectively.
8. To develop students' communication skills in expressing programming
concepts and solutions clearly and effectively.

9. To prepare students for advanced programming courses and real-world

software development scenarios.

Module Learning
Outcomes

Al pall 3alall aladl) s j3a

Upon successful completion of this module, students should be able to:

1. Demonstrate a solid understanding of the fundamental principles and concepts
of programming.

2. Utilize the syntax and structure of the C++ programming language to write
well-structured and efficient code.

3. Apply problem-solving skills and algorithmic thinking to develop solutions
for a variety of computational problems.

4. Design, implement, and test programs using C++ to solve specific tasks and
challenges.

5. Utilize modular programming techniques to create reusable and maintainable
code.

6. Debug and troubleshoot programs effectively using appropriate debugging
techniques and tools.

7. Collaborate and work effectively in teams to complete programming projects.
8. Communicate programming concepts, solutions, and ideas clearly and
effectively, both orally and in written form.

9. Demonstrate a readiness to progress to more advanced programming courses
or pursue a career in software development.

Indicative Contents
Aala Y1l giaal)

1. Introduction to Computer Science:
- Overview of computer science as a discipline
- Key concepts and principles in computer science
- Role of programming in computer science

2. Introduction to Computers, Binary System, and Information Representation:
- Basics of computer architecture and components
- Understanding the binary system and its significance in computing
- Conversion between binary and decimal.
- Representation of different data types in computers
- ASCII and Unicode for character encoding

3. Algorithm Design and Problem Solving:
- Understanding algorithms and problem-solving strategies
- Analyzing problem requirements and designing algorithmic solutions
- Time and space complexity analysis
- Representing algorithms with Pseudocode and Flowcharts:
- Using pseudocode as a high-level representation of algorithms
- Writing pseudocode to describe the logic and steps of an algorithm
- Understanding flowcharts as visual representations of algorithms
- Basic flowchart symbols and their meanings
- Creating flowcharts to represent the flow of control in algorithms

4. Introduction to C++:

- History and features of the C++ programming language
- Setting up a C++ development environment

- Basic syntax and structure of C++ programs

5. Variables and Data Types:

- Declaring and initializing variables

- Fundamental data types (integers, floating-point numbers, characters)
- Working with constants and literals

6. Operators and Expressions:
- Arithmetic operators

- Assignment operators

- Comparison operators

- Logical operators

7. Control Structures:

- Decision-making with if-else statements

- Switch statements for multiple choices

- Repetition with loops (while, do-while, for)
- Handling user input and validation

8. Functions:
- Function declaration and definition
- Parameters and argument passing
- Return values and function overloading
- Scope and lifetime of variables

Learning and Teaching Strategies

a5 aleil cilia i) yind

Strategies

1. Lectures: The instructor will deliver lectures to introduce and explain
programming concepts, C++ syntax, and problem-solving techniques. This
will provide students with a solid theoretical foundation.

2. Interactive Discussions: Engaging students in interactive discussions
allows them

to ask questions, seek clarifications, and participate actively in the learning
process. Discussions can include reviewing code examples, discussing
programming best practices, and exploring real-world applications of
programming concepts.

3. Laboratory Sessions: Laboratory sessions are dedicated practical
sessions where students apply the concepts learned in lectures to hands-
on programming exercises. Key strategies for the laboratory sessions
include:

a. Programming Exercises: Students will work on programming exercises
and projects in the laboratory, providing them with practical experience in
coding and problem-solving.

b. Guided Practice: Lab instructors or teaching assistants will be available
to provide guidance, assistance, and immediate feedback on students'
code. They can help students debug their programs, identify errors, and
improve their coding skills.

c. Collaboration and Peer Learning: Students can collaborate with their
peers in the laboratory, fostering teamwork and enabling knowledge
sharing. Working together on programming tasks promotes discussions,

problem-solving, and peer learning.

d. Equipment and Resource Access: The laboratory should provide access
to computers, necessary software tools, programming references, and
relevant online resources. This ensures that students have the necessary
resources to complete their lab exercises and assignments effectively.

4. Programming Assignments: Assignments will be given to students to
reinforce their understanding of programming concepts and encourage
independent problem-solving. These assignments may involve
implementing algorithms, designing software systems, or developing
small-scale projects using C++.

5. Code Reviews and Feedback: The instructor will provide feedback on
students' code, reviewing their solutions, and offering suggestions for
improvement. This feedback will help students enhance their coding skills
and adhere to best practices.

6. Office Hours and Individual Support: The instructor should be available
for individual consultations and provide support to students who need
additional help or guidance in understanding programming concepts or
completing assignments.

Student Workload (SWL)
le saul 10 o gauna calllall sl jal) Jeal

Structured SWL (h/sem) 92 Structured SWL (h/w) 6.13
Juadl) JBA Ul el ol) Jaal) e sal calldall alaiiall sl all Jasll '
Unstructured SWL (h/sem) 108 Unstructured SWL (h/w) 79
el g3 Cllall aliidd) ye sl 5l Jaall Lo sl Calllall alaiiall el al) Jaal '
Total SWL (h/sem) 200

Jamdl) A Qalall IS) 5l Jas)

Module Evaluation

Al)al) 3alal) avi
Time/Nu Weight (Marks) Week Due Relevant Learning
mber Outcome

Quizzes 2 10% (10) 5,11 #L.O 1-3, #LO 5-8
Formative Assignments 2 10% (10) 7,12 #L0O 3-5, #LO 5-8
assessment Projects 1 10% (10) continuous

Report 1 10% (10) 14 #LO 1-8
Summative Midterm Exam 2 hr 10% (10) 11 #LO 1-7
assessment Final Exam 2 hr 50% (50) 16 All

Total assessment | 100% (100 Marks) |

Delivery Plan (Weekly Syllabus)

bl o sl rleiall
Week No. | Material Covered
Week 1 Introduction to Computer Science, Computers Components, Binary and Info Representation
Week 2 | Algorithms Design and Writing pseudocode
Week 3 | Algorithms design and Drawing Flowchart
Introduction to Programming Languages (History, Categories, Main Differences) and,
Weeka Introduction to Programming in C++ (Program Structure and Coding Environment)
Week 5 | Variables, Datatypes, Output, and Input
Week 6 | Operations (Arithmetic and Assignment) and Math Functions
Week 7 | Operations (Comparison and Logical)
Week 8 | Flow Control (if —else)
Week 9 | Flow Control (switch — case)
Week 10 | Loops (counter and cumulative variables)
Week 11 | Uncountable Loops
Week 12 | Nested Loops
Week 13 | Functions
Week 14 | building a TikTacToe Game
Week 15 | Reviewing Students’ Projects
Delivery Plan (Weekly Lab. Syllabus):
il e sl Zleiall
Week No. | Material Covered
Week 1 Using Operating System, Creating Files and Folders, Writing Text)
Week 2 Difference among (Text Editor, Word Processor, Code Editor and IDE)
Week 3 | prawing (Darg and drop) Flowcharts
Week 4 Installing C++ coding environment and running Hello World program
Week 5 Running Examples on Variables, Datatypes, Output, and Input
Week 6 Running Examples on Operations (Arithmetic and Assignment) and Math Functions
Week 7

Running Examples on Operations (Comparison and Logical)

Week 8 | Running Examples on Flow Control (if —else)

Week 9 | Running Examples on Flow Control (switch — case)

Week 10 Running Examples on Loops (counter and cumulative variables)
Week 11 | Running Examples on Uncountable Loops

Week 12| Running Examples on Nested Loops

Week 13 | Running Examples on Functions

Week 14 Fixing problems in students’ projects

Week 15 | Applying instructor’s feedback on students’ projects

Learning and Teaching Resources
u»:!)ﬂ\} eﬂaﬂ\ JJLAAA

Available in the
Text .
Library?
Stroustrup, Bjarne - Programming_ principles and
Required Texts practice using C++-Addison-Wesley (2015) Yes
Recommended Texts Ol_sson, Mikael - C++20 Quick syntax reference: a pocket No
guide to the language, apis, and library
Websites
Grading Scheme
oLy Grade sl VIETHE Definition
(%)
A - Excellent Jlal 90 - 100 Outstanding Performance
B - Very Good EENFEES 80 - 89 Above average with some errors
Success Group d q K with ol
(50 - 100) C - Goo B> 70-79 Sound work with notable errors
D - Satisfactory Lo sl 60 - 69 Fair but with major shortcomings
E - Sufficient Jssia 50 - 59 Work meets minimum criteria
Fail Group FX — Fail (Aadlaall 28) ol , | (45-49) More work required but credit awarded
(0-49) F — Fail el (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

