MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدر اسية						
Module Title	Computation theory			Modu	le Delivery	
Module Type		Supportive			⊠ Theory	
Module Code				☐ Lecture		
ECTS Credits	6			☐		
SWL (hr/sem)		150				
Module Level		1	Semester of Delivery		2	
Administering De	epartment	Computer Science	College	CCSM		
Module Leader	Marwa Adeeb N	Mohammud	e-mail	Marwa.	a.aljawaherry@t	u.edu.iq
Module Leader's	Module Leader's Acad. Title Assistant Professor		Module Leader's Qualification master		master	
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		01/01/2024	Version Nu	mber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	Prerequisite module None Semester				
Co-requisites module Compiler Semester					

Module	e Aims, Learning Outcomes and Indicative Contents أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإر شادية				
	Theory of computation is the theoretical study of capabilities and limitations of Computers (Theoretical models of computation). Providing students with:				
	1. Understand of basic concepts in the theory of computation through				
	simple models of computational devices.				
Module Aims	2. Apply models in practice to solving problems in diverse areas such as				
أهداف المادة الدر اسية	string searching, pattern matching, cryptography, and language design.				
	3. Understand the limitations of computing, the relative power of formal				
	languages and the inherent complexity of many computational				
	problems.				
	4. Be familiar with standard tools and notation for formal reasoning about				
	machines and programs.				
Module Learning Outcomes مخرجات التعلم للمادة الدر اسية	 Upon successful completion of this module, students should be able to: Cognitive objectives: Enabling the student to know and understand the theoretical principles of the programming process. Enabling the student to know the intellectual framework of computer basics. Enabling the student to know the practical applications of the programming foundation that the subject has. Enabling the student to explain the steps of program implementation. kills objectives for the course: Designing basic diagrams for computational theoretical methods. Writing algorithms. Writing and implementing methods. Following up on the implementation and planning of algorithms and discovering errors. Teaching and learning methods, theoretical lectures, using projectors for clarification with illustrative examples, drawing diagrams that facilitate the process of understanding and conveying the idea to the student. 				
Indicative Contents المحتويات الإرشادية	 Focuses interest on studying how calculations and reasoning are performed in the context of computer systems. 1. Computing Paradigms: Paradigms such as the Turing machine, quantum computing are explored and used to analyze computational capabilities and limits. 2. Description Languages: Computational theory studies the languages and models that are used to describe and analyze computational operations. 				
	models that are used to describe and analyze computational operations, such as neural language and conditional language.				

3. Computational complexity: It is concerned with analyzing computer complexity and classifying problems according to their computational difficulty and the ability of computer systems to solve them.
4. Mental Machines: Computational theory studies the relationship between computing and the human mind, and whether the mind can be represented and simulated by computational machines.
5. Artificial Intelligence: Artificial intelligence is an important application of computational theory, where computational models are used to develop artificial intelligence systems capable of thinking and making decisions.

Learning and Teaching Strategies استر اتیجیات التعلم و التعلیم				
Strategies	استر اتيجيات التعلم و التعليم 1. Lectures: The instructor will deliver lectures to introduce and explain programming concepts, C++ syntax, and problem-solving techniques. This will provide students with a solid theoretical foundation. 2. Interactive Discussions: Engaging students in interactive discussions allows them to ask questions, seek clarifications, and participate actively in the learning process. Discussions can include reviewing code examples, discussing programming best practices, and exploring real-world applications of programming concepts. 4. Programming Assignments: Assignments will be given to students to reinforce their understanding of programming concepts and encourage independent problem-solving. These assignments may involve implementing algorithms, designing software systems, or developing small-scale projects using C++. 6. Office Hours and Individual Support: The instructor should be available for individual consultations and provide support to students who need additional help or guidance in understanding programming concepts or completing assignments.			

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ أسبو عا				
Structured SWL (h/sem) 77 Structured SWL (h/w) 5.1 الحمل الدر اسي المنتظم للطالب أسبوعيا الحمل الدر اسي المنتظم للطالب خلال الفصل 5.1				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	73	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	4.8	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل	150			

Module Evaluation تقييم المادة الدر اسية							
	Time/Nu Weight (Marks) Week Due Relevant Learning mber Outcome						
	Quizzes	2	10% (10)	5, 11	LO #1-4 , LO# 5-7		
Formative	Assignments	2	10% (10)	7, 12	LO #1-4 , LO# 5-7		
assessment	Projects	1	10% (10)	continuous	LO #1-7		
	Report	1	10% (10)	14	LO # 4 - 7		
Summative	Midterm Exam	2 hr	10% (10)	11	LO # 1-6		
assessment	Final Exam	2 hr	50% (50)	16	All		
Total assessment 100% (100 Marks)							

Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري				
Week No.	Material Covered				
Week 1	Set, string, alphabet and language				
Week 2	Regular expression				
Week 3	Finite state automata, deterministic and nondeterministic finite state automata.				
Week 4	Equivalence between deterministic and nondeterministic finite state automata				
Week 5	Finite state automata with empty move.				
Week 6	Equivalence of NFA with and without ϵ move				
Week 7	The equivalence between Moore and Mealy machine				
Week 8	Grammar, Chomsky hierarchy of languages.				
Week 9	- The regular grammars and regular languages.				
Week 10	- Closure properties of regular sets (union, concatenation and kleen closure).				
Week 11	Regular expression, closure properties of regular languages (intersection, complementation				

	and substitution)
Week 12	Decision procedures for regular sets(emptiness, finiteness, containment and equivalence).
Week 13	Context- free grammars and languages with their Properties.
Week 14	Context-free grammar without empty string production (λ -free grammar).
Week 15	Derivation trees.

Learning and Teaching Resources مصادر التعلم والتدريس				
Text Available in the Library?				
Required Texts	Introduction to Computer Theory 3 rd Edition michael sipser, USA, 2013. ISBN-13: 978-1-133-18779- 0.	Yes		
Recommended Texts	Introduction to Automata Theory, Languages, and Computation, 2/E, John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, Addison-Wesley 2001. ISBN 0-201-44124-1.	No		
Websites				

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
G G	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	ر اسب (قید المعالجة)	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.