
1

MODULE DESCRIPTION FORM

 نموذج وصف المادة الدراسية

Module Information

 معلومات المادة الدراسية

Module Title Advanced Programming Module Delivery

Module Type Core ☒ Theory

 ☒ Lecture

 ☒ Lab

 ☐ Tutorial

 ☐ Practical

 ☒ Seminar

Module Code TUCS

ECTS Credits 8

SWL (hr/sem) 200

Module Level 1 Semester of Delivery 2nd

Administering Department Computer Science College CCSM

Module Leader Mohanad Hatem Ramadhan e-mail Mohanad.H.Ramadhan@tu.edu.iq

Module Leader’s Acad. Title Assistant Lecturer Module Leader’s Qualification master

Module Tutor Yahya Laith Khalil e-mail

Peer Reviewer Name Mohamed Aktham e-mail

Scientific Committee Approval

Date
07/06/2023 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module Programming Fundamentals Semester

Co-requisites module None Semester

2

Module Aims, Learning Outcomes and Indicative Contents

المادة الدراسية ونتائج التعلم والمحتويات الإرشاديةأهداف

 Module Aims

 أهداف المادة الدراسية

1. Understanding Advanced Data Structures: The module aims to provide students with

a deep understanding of arrays, strings, and their manipulation techniques. Students

will learn about multidimensional arrays, character arrays, and string handling

functions.

2. Mastery of Pointers: The module aims to develop students' proficiency in using

pointers in C++. Students will learn the concepts of memory addresses, pointer

arithmetic, and dynamic memory allocation. They will understand how to manipulate

data using pointers and how to utilize them for efficient memory management.

3. File Handling and Input/Output Operations: The module aims to introduce students

to file handling concepts and techniques in C++. Students will learn how to read from

and write to files, open and close files, handle file errors, and perform various

input/output operations using file streams. They will understand file modes, buffering,

and error handling.

4. File Management and Organization: The module aims to teach students how to

manage and organize files effectively in C++. They will learn to create, modify, and

delete files, organize file directories, and handle file-related operations. Students will

understand the importance of file management in real-world programming scenarios.

5. Practical Application and Problem-Solving: Throughout the module, students will be

exposed to practical programming exercises and problem-solving tasks. They will

apply the concepts learned to solve real-world programming challenges, consolidating

their understanding and enhancing their problem-solving skills.

By focusing on arrays, strings, pointers, and file handling in C++, this advanced

programming module aims to provide students with a comprehensive understanding of

these concepts and their practical application. Students will develop the skills necessary

to manipulate complex data structures, handle files, and write efficient and reliable code.

Module Learning

Outcomes

 مخرجات التعلم للمادة الدراسية

1. Demonstrate an in-depth understanding of arrays, strings, pointers, and file handling

concepts in C++.

2. Apply advanced array operations, such as searching and sorting algorithms, and

multidimensional arrays to solve programming problems.

3. Manipulate strings effectively, including concatenation, substring extraction,

searching, and sorting.

4. Utilize pointers proficiently for data manipulation, including memory addresses, and

3

pointer arithmetic

5. Read from and write to files, perform input/output operations, and handle file-related

errors using file streams in C++.

6. Manage and organize files effectively, including creating, modifying, deleting, and

organizing file directories.

7. Apply efficient programming techniques, optimize code, and adhere to best practices

for writing clean and readable code.

8. Demonstrate problem-solving skills by applying the learned concepts to solve real-

world programming challenges.

9. Work collaboratively in teams, communicate effectively, and share knowledge and

ideas related to advanced programming concepts.

10. Adapt to new programming concepts and technologies beyond the scope of the

course, building a foundation for lifelong learning in programming.

These learning outcomes reflect the knowledge, skills, and competencies that students

will acquire upon completing the advanced programming course. The outcomes

emphasize both theoretical understanding and practical application, preparing students

for real-world programming challenges and further studies in the field of computer

science.

Indicative Contents

 المحتويات الإرشادية

1. Review of Basic Programming Concepts:

 - Recap of fundamental programming concepts, including variables, data types,

control structures, and functions.

2. Arrays:

 - Multidimensional arrays

 - Array manipulation techniques

 - Searching and sorting algorithms

3. Strings:

 - String manipulation and operations

 - String handling functions

4. Pointers:

 - Introduction to pointers and their usage

 - Memory addresses and pointer arithmetic

 - Pointers to arrays

5. Files:

 - File handling concepts

 - Reading from and writing to files

 - File organization and management

4

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

1. Lectures: The instructor will deliver lectures to introduce and explain

programming concepts, C++ syntax, and problem-solving techniques. This will

provide students with a solid theoretical foundation.

2. Interactive Discussions: Engaging students in interactive discussions allows

them to ask questions, seek clarifications, and participate actively in the

learning process. Discussions can include reviewing code examples, discussing

programming best practices, and exploring real-world applications of

programming concepts.

3. Laboratory Sessions: Laboratory sessions are dedicated practical sessions

where students apply the concepts learned in lectures to hands-on programming

exercises. Key strategies for the laboratory sessions include:

 a. Programming Exercises: Students will work on programming exercises and

projects in the laboratory, providing them with practical experience in coding

and problem-solving.

 b. Guided Practice: Lab instructors or teaching assistants will be available to

provide guidance, assistance, and immediate feedback on students' code. They

can help students debug their programs, identify errors, and improve their

coding skills.

 c. Collaboration and Peer Learning: Students can collaborate with their peers

in the laboratory, fostering teamwork and enabling knowledge sharing.

Working together on programming tasks promotes discussions, problem-

solving, and peer learning.

 d. Equipment and Resource Access: The laboratory should provide access to

computers, necessary software tools, programming references, and relevant

online resources. This ensures that students have the necessary resources to

complete their lab exercises and assignments effectively.

4. Programming Assignments: Assignments will be given to students to

reinforce their understanding of programming concepts and encourage

independent problem-solving. These assignments may involve implementing

algorithms, designing software systems, or developing small-scale projects

using C++.

5. Code Reviews and Feedback: The instructor will provide feedback on

students' code, reviewing their solutions, and offering suggestions for

5

improvement. This feedback will help students enhance their coding skills and

adhere to best practices.

6. Office Hours and Individual Support: The instructor should be available for

individual consultations and provide support to students who need additional

help or guidance in understanding programming concepts or completing

assignments.

Student Workload (SWL)

 اسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
93

Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
4

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
107

Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
7.13

Total SWL (h/sem)

 الحمل الدراسي الكلي للطالب خلال الفصل
200

Module Evaluation

 تقييم المادة الدراسية

As

Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (10) 5, 11

Assignments 4 20% (20) 7, 12

Projects 1 20% (20) 5-14

Report 1

Summative

assessment

Midterm Exam 2 hr 10% (10) 11

Final Exam 2hr 40% (40) 16 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

Week Week No. Material Covered

Week 1
Recap of fundamental programming concepts, including variables, data types, control

structures, and functions.

Week 2 Introduction to Arrays (Linear arrays)

Week 3 Searching and Sorting Linear Arrays

Week 4 Multidimensional Arrays and Square Arrays

6

Week 5 Multiplication of Two Arrays and Re-write TicTacToe game with Arrays

Week 6 Introduction to String and Its Operations

Week 7 More Examples on String

Week 8 Introduction to Pointers

Week 9 Pointer to Array and Pointer Arthmetic

Week 10 First Project Due (Reviewing and Comments)

Week 11 Introduction to Files and Directories

Week 12 Working with Text Files (Read, Write)

Week 13 Working with Binary Files

Week 14 Second Project Due (Students Presentations part1)

Week 15 Second Project Due (Students Presentations part1)

Delivery Plan (Weekly Lab. Syllabus):

 : الاسبوعي للمختبرالمنهاج

Week No. Material Covered

Week 1 Getting used to CLI Interfaces and practicing some commands on PowerShell

Week 2 Running Examples on Array

Week 3 Practicing Arrays further (Searching)

Week 4 Practicing Arrays further (Sorting)

Week 5 Running Examples on 2D and Square Arrays

Week 6 Running Examples on Strings

Week 7 Searching in String

Week 8 Running Characters Frequency Example

Week 9 Running Examples on Pointers

Week 10 Running More Examples on Pointers

Week 11 Running Examples on Directories and Files

Week 12 Running More Examples on Files

Week 13 Running More Advanced Programs on Files

Week 14 Wrapping up

Week 15 Answering Students Questions and Extra Advising on Real World Application Programming

7

Learning and Teaching Resources

 مصادر التعلم والتدريس

 Text
Available in the

Library?

Required Texts

 Stroustrup, Bjarne - Programming_ principles and

practice using C++-Addison-Wesley (2015)

Yes

Recommended Texts Olsson, Mikael - C++20 Quick syntax reference: a pocket

guide to the language, apis, and library
No

Websites

 Grading Scheme

 مخطط الدرجات
Group

Grade التقدير
Marks

(%)
Definition

Success Group

(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جيد جدا Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail)(49-45) راسب)قيد المعالجة More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

