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Sequence Data 

 
Sequential Data  

Sequential data refers to data where the order of the elements or observations 

matters. It’s commonly used in contexts where the relationship between data points 

is influenced by their position in a sequence. Examples of sequential data include 

time series data, natural language (text), audio signals, stock prices, and more. 

characteristics of sequential data: 

1. Temporal or Structural Dependence: Each element in the sequence 

depends on its previous elements. For instance, in a time series, the next value 

might be influenced by the previous ones. 

2. Order Sensitivity: The arrangement of data points matters. Changing the 

order can significantly affect the interpretation or outcome, such as in 

sentence structure where word order determines meaning. 

3. Continuous or Discrete: Sequential data can either be continuous (e.g., stock 

prices) or discrete (e.g., daily temperature). 

Examples of Sequential Data 

• Text: Sentences in a document. 

• Time Series: Stock prices, weather data, or sensor readings over time. 

• Audio: Speech, music, or other sound waves. 

• Video Frames: Sequences of images forming a video. 

• DNA Sequences: Nucleotide bases in genetics. 

 

 



Sequence Models 

 

Sequence Models 

Sequence models are a class of machine learning models designed to process and 

analyze data where order or temporal dependencies are essential. Unlike traditional 

models that treat data as independent and identically distributed, sequence models 

account for the sequential nature of the data, making them suitable for tasks 

involving time steps, context, or position. 

Challenges in Sequence Modeling 

1. Long-Term Dependencies: 

o Difficulty in retaining information across long sequences. 

o Example: Understanding the subject of a paragraph after reading several 

sentences. 

2. Vanishing and Exploding Gradients: 

o Problems arising in traditional recurrent networks during 

backpropagation. 

3. Computational Efficiency: 

o Processing long sequences can be resource-intensive. 

4. Variable Sequence Lengths: 

o Real-world sequences can vary in length, requiring adaptable models. 

 

Types of Sequence Models 

1. Statistical Models: 

o Hidden Markov Models (HMMs), Conditional Random Fields (CRFs). 

2. Recurrent Neural Networks (RNNs): 

o Includes LSTMs, GRUs, and basic RNNs. 

3. Convolutional Sequence Models: 



o Temporal Convolutional Networks (TCNs). 

4. Transformer Models: 

o Self-attention mechanisms, e.g., Transformers, BERT, GPT. 

 

Applications of Sequence Models 

1. Language Translation: Converting sentences from one language to another. 

2. Speech Recognition: Transcribing spoken words into text. 

3. Text Generation: Writing new content, e.g., stories, articles, or code. 

4. Time-Series Prediction: Forecasting future values based on past trends. 

5. Anomaly Detection: Identifying unusual patterns in data sequences. 

6. Healthcare: Monitoring patient vitals or predicting disease outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Recurrent Neural Networks (RNNs) 
 

Recurrent Neural Networks  

Recurrent Neural Networks (RNNs) were introduced in the 1980s by 

researchers David Rumelhart, Geoffrey Hinton, and Ronald J. Williams. RNNs have 

laid the foundation for advancements in processing sequential data, such as natural 

language and time-series analysis, and continue to influence AI research and 

applications today. 

RNNs are a class of artificial neural networks designed to process sequential 

data, where the order of the data points is significant. Unlike traditional feedforward 

networks, RNNs have a feedback loop that allows them to maintain a "memory" of 

previous inputs, making them particularly well-suited for tasks where context and 

temporal dependencies are crucial. 

 

The key feature of RNNs is their recurrent connection, where the output from a 

previous time step is fed back into the network as input for the next time step. This 

architecture enables RNNs to learn patterns over time, making them effective for  

Recurrent Neural Networks introduce a mechanism where the output from one 

step is fed back as input to the next, allowing them to retain information from 

previous inputs. This design makes RNNs well-suited for tasks where context from 

earlier steps is essential, such as predicting the next word in a sentence. 



The defining feature of RNNs is their hidden state—also called the memory 

state—which preserves essential information from previous inputs in the 

sequence. By using the same parameters across all steps, RNNs perform 

consistently across inputs, reducing parameter complexity compared to traditional 

neural networks. This capability makes RNNs highly effective for sequential tasks. 

RNNs apply the same network to each element in a sequence, RNNs preserve and pass 

on relevant information, enabling them to learn temporal dependencies that 

conventional neural networks cannot 

Recurrent Unit 

The fundamental processing unit in a Recurrent Neural Network (RNN) is a 

Recurrent Unit, which is also called a “Recurrent Neuron.” Recurrent units hold a 

hidden state that maintains information about previous inputs in a sequence. 

Recurrent units can “remember” information from prior steps by feeding back 

their hidden state, allowing them to capture dependencies across time. 

 

The core innovation of RNNs lies in their recurrent connections. At each time step t, 

an RNN cell: 

1. Receives an input x(t) 

2. Processes its previous hidden state h(t-1) 

3. Produces a new hidden state h(t) 

4. Generates an output y(t) 

The mathematical formulation can be expressed as:  

h(t) = tanh(W_hh * h(t-1) + W_xh * x(t) + b_h) 



y(t) = W_hy * h(t) + b_y 

Where: 

• Whh: Hidden-to-hidden weights 

• Wxh: Input-to-hidden weights 

• Why: Hidden-to-output weights 

• bh, by: Bias terms 

RNN Unrolling 

RNN unrolling or “unfolding”, is the process of expanding the recurrent 

structure over time steps. During unrolling, each step of the sequence is 

represented as a separate layer in a series, illustrating how information flows 

across each time step. This unrolling enables backpropagation through time 

(BPTT), a learning process where errors are propagated across time steps to 

adjust the network’s weights, enhancing the RNN’s ability to learn dependencies 

within sequential data. 

When training an RNN, it is helpful to "unroll" it across time steps, effectively 

representing each time step as a separate layer in a feedforward network. This 

allows the model to be trained using Backpropagation Through Time (BPTT), a 

variation of backpropagation that accounts for dependencies across time steps. 

For example, given a sequence [x1,x2,…,xT], the RNN structure can be visualized as: 

1. Time Step 1: Computes h1 from x1 and the initial hidden state h0. 

2. Time Step 2: Computes h2 from x2 and h1. 

3. … 

4. Time Step T: Computes hT from xT and hT−1. 

Each hidden state ht is influenced by all previous inputs (x1,x2,…,xt), allowing the 

network to capture contextual information from the sequence. 



 

Types Of Recurrent Neural Networks 

There are four types of RNNs based on the number of inputs and outputs in the 

network: 

a) One-to-One:  

• Single input to single output 

• Used for traditional neural network tasks 

 

b) One-to-Many:  

• Single input generates sequence output 

• Example: Image captioning 

 

c) Many-to-One:  

• Sequence input produces a single output 

• Example: Sentiment analysis 

 

d) Many-to-Many:  

• Sequence input to sequence output 

• Example: Machine translation 

https://www.geeksforgeeks.org/types-of-recurrent-neural-networks-rnn-in-tensorflow/?ref=asr1


Architecture of Recurrent Neural Networks (RNNs) 
 

The architecture of a Recurrent Neural Network (RNN) distinguishes it from 

feedforward neural networks by its ability to process sequential data and maintain 

contextual information across time steps. Here's a breakdown of the core 

components of an RNN's architecture: 

 

1. Input Layer 

• The input to an RNN is a sequence of data points, represented as {x1,x2,...,xT} 

where T is the sequence length. 

• At each time step t, an input vector xt is provided to the network. 

2. Hidden Layer (Recurrent Layer) 

• The hidden layer is where the recurrence happens. It maintains a state, ht, that 

captures information from the current input and the previous hidden state. 

• The hidden state is updated at each time step using the formula: 

 

o Wxh: Weights for the input to the hidden state. 

o Whh: Weights for the previous hidden state to the current hidden state. 



o bh: Bias term for the hidden state. 

o f: Activation function, typically a non-linear function like tanh or ReLU. 

• This recurrent connection allows the network to retain information about 

previous time steps, creating a "memory" of the sequence. 

3. Output Layer 

• The output at each time step, yt, is computed using the current hidden state: 

 

o Why: Weights for the hidden state to output mapping. 

o by: Bias term for the output. 

o g: Activation function, which varies based on the task (e.g., softmax for 

classification, linear for regression). 

• Depending on the task, the RNN may output: 

o One value for the entire sequence (many-to-one). 

o One value at each time step (many-to-many). 

4. Backpropagation Through Time (BPTT) 

• During training, errors are propagated backward through all time steps to 

update the weights. This is called Backpropagation Through Time (BPTT). 

• The process involves computing gradients for each time step and summing 

them to update the shared parameters. 

 



Backpropagation Through Time (BPTT) 
 

Backpropagation Through Time (BPTT) 

Backpropagation Through Time (BPTT) is an extension of the backpropagation 

algorithm designed to train recurrent neural networks (RNNs). It adjusts the 

weights of the RNN by accounting for the dependencies across time steps in 

sequential data. 

In standard backpropagation, errors are propagated backward through a 

feedforward network. In BPTT, errors are propagated not only through the layers of 

the network but also backward through the time steps of the sequence. 

BPTT Work 

1. Forward Pass 

1. Process the input sequence step-by-step over time. 

2. At each time step t: 

o The input xt and the hidden state from the previous step ht−1 are used to 

compute the new hidden state ht:  

 

3. If there is an output yt, it is computed as:  

 

4. The loss is computed for each time step based on the output yt and the true 

value y. 



2. Backward Pass (Unrolling the Network) 

• The RNN is "unrolled" across time steps to form a computational graph. 

• Gradients are computed for each weight by summing up contributions from 

all time steps. 

Steps: 

1. Error Signal: 

Calculate the error signal at the final time step T: 

 

where LT is the loss at time step T. 

2. Backpropagation Through Time Steps: 

Propagate the error backward through time: 

 

3. Gradient Computation: 

Compute gradients for weights Wh, Wx, and Wy by summing their 

contributions across all time steps: 

 

4. Weight Updates: 
Update weights using a gradient descent algorithm: 

 

where η is the learning rate. 



Example: Sentence Processing 

Imagine processing the sentence "I love deep learning": 

1. The first word ("I") is input, and the RNN generates a hidden state h1. 

2. The second word ("love") is combined with h1 to compute h2. 

3. This process continues for all words, with the output at each step depending 

on the sequence so far. 

This enables the RNN to understand context and meaning across the sequence. 

Example: Predicting Stock Prices 

Let's consider an example where an RNN is used to predict stock prices based on 

past price data. The input sequence consists of daily stock prices over several days, 

and the goal is to predict the price on the next day. 

Step-by-Step Process 

1. Input Sequence: 

o Suppose the stock prices for the past 5 days are: 

{100,102,105,107,110}. 

Each value represents the stock price for a day, where: 

▪ x1=100, 

▪ x2=102, 

▪ x3=105, 

▪ x4=107, 

▪ x5=110. 

2. Initial Hidden State: 

o The RNN starts with an initial hidden state h0, typically initialized to 

zeros. 

3. Hidden State Updates: 



o For each day: 

▪ The RNN takes the stock price of the current day as input (xt). 

▪ It updates the hidden state ht using xt and the previous hidden 

state ht−1. 

For example: 

 

4. Output: 

o The RNN generates an output yt for each time step, which represents 

the predicted stock price for the next day: 

 

For instance: 

o After processing x1=100, the network might predict y1=101. 

o After x2=102, it might predict y2=104, and so on. 

5. Final Prediction: 

o After processing the entire sequence (x1,x2,...,x5), the RNN uses the last 

hidden state h5 to predict the stock price for the next day (y6). 

 

Context is Retained 

• The RNN "remembers" trends and patterns, such as whether the stock price is 

generally increasing or if there are periodic fluctuations. 



• For instance, if the prices are consistently rising, the RNN captures this trend 

in the hidden states, allowing it to predict a higher price for the next day. 

 

Output Example 

If the actual sequence of stock prices was: 

{100,102,105,107,110,113}, 

the RNN might predict: 

{101,104,106,109,112,115}, 

with some errors that gets minimized during training. 

 

Vanishing and Exploding Gradient Problems in RNN

 

The vanishing gradient problem arises when weights that are too small cause the 

values being pushed back through backpropagation to drop down to almost zero. 

Conversely, the exploding gradient occurs when the weight of the current network 

is too large, causing the number to blow up to infinity during backpropagation. 

The Vanishing Gradient Problem 

One of the primary challenges in training RNNs is the vanishing gradient problem. 

During backpropagation through time (BPTT), gradients can: 

• Exponentially shrink as they flow backward through time steps 

• Lead to difficulties in learning long-term dependencies 

• Result in the network primarily focusing on recent inputs 

Solutions and Variants 



1. Long Short-Term Memory (LSTM) 

LSTMs introduce specialized gates: 

• Forget gate: Controls information to discard 

• Input gate: Regulates new information flow 

• Output gate: Manages information propagation 

• Memory cell: Maintains long-term dependencies 

2. Gated Recurrent Units (GRU) 

GRUs simplify the LSTM architecture by: 

• Combining forget and input gates into an update gate 

• Merging cell state and hidden state 

• Reducing computational complexity while maintaining performance 

Applications of Recurrent Neural Network (RNN) 

1. Natural Language Processing 

NLP is an application of RNN that is used to comprehend natural language. It 

involves analyzing the sentence structure, identifying the parts of speech and 

then making meaning out of the sentences. 

• Sentiment Analysis: Sentiment analysis is an application of RNN that 

analyzes text to determine if it has a positive, negative, or neutral sentiment. 

RNNs are particularly useful in this application because of their ability to 

analyze text effectively. 

• Speech Recognition  :Speech recognition is an application of RNN that 

involves speech to text conversion. The network is trained using audio and text 

data, making it possible for the network to recognize spoken words and 

convert them to text. 



• Machine translation is an application of RNN that involves the translation of 

one language to another in real-time. The network is exposed to a significant 

number of sentences in multiple languages, enabling the network to learn 

about grammar, sentence structure, and meaning of sentences. 

• Handwriting recognition is an application of RNN that involves recognizing 

handwritten text and converting it to digital text. RNN is particularly useful for 

this application because of its ability to recognize complex patterns in text. 

• Text Generation where a model generates coherent and contextually 

relevant text based on a given input. It has applications in tasks such as 

chatbots, content creation, translation, storytelling, and code generation. 

2. Time Series Analysis 

• Financial Forecasting 

• Weather Prediction 

• Sensor Data Processing 

3. Music Generation 

• Melody Composition 

• Rhythm Pattern Recognition 

• Harmonic Progression Prediction 

Recent Advances in RNN 

1. Attention Mechanisms 

Attention mechanisms are a key innovation in deep learning, particularly for 

handling sequential and structured data. They allow models to dynamically focus on 

the most relevant parts of the input data when making predictions, improving 

efficiency and performance in tasks like translation, text summarization, image 

captioning, and more. The benefit of attention include: 



• Dynamically adjusts focus on important parts of input data. 

• Handles long-range dependencies effectively. 

• Improves interpretability by showing which parts of the input were most 

influential in the output. 

Types of Attention Mechanisms 

a. Global Attention 

• Considers all input tokens when producing each output token. 
• Each token's relevance is determined by computing weights for all inputs. 
• Example: Machine Translation, where the entire source sentence is attended 

to. 

b. Local Attention 

• Focuses on a subset of input tokens for each output token. 
• Reduces computational cost while maintaining focus on relevant regions. 

c. Self-Attention (Intra-Attention) 

• Each token in the input sequence attends to every other token in the 
sequence. 

• Forms the basis of Transformer models. 
• Captures long-range dependencies efficiently. 

d. Multi-Head Attention 

• Extends self-attention by splitting it into multiple subspaces (heads). 
• Each head learns a different aspect of the input, enhancing model capacity. 

2.Bidirectional RNNs 

A Bidirectional Recurrent Neural Network (BiRNN) is an extension of the standard RNN 

architecture that processes input sequences in both forward and backward directions. This 

allows the network to capture contextual information from both the past and the future, 

improving performance in tasks where context is critical, such as speech recognition, 

language modeling, and machine translation. 

These networks process sequences in both forward and backward directions, 

providing: 



• Better context understanding 

• Improved performance on many tasks 

• More robust feature extraction 

Structure of BiRNN 

 

1. Forward RNN: 

o Processes the input sequence from the first time step to the last. 

 

2. Backward RNN: 

o Processes the input sequence in reverse, from the last time step to the first. 

 

3. Combining States: 

o The hidden states from both directions are combined at each time step, typically by 

concatenation or summation:  

o  
o ht represents the context-aware encoding for time step ttt. 

 

 



Long Short-Term Memory (LSTM) 
 

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural 

Network (RNN) designed to handle sequential data and address the vanishing 

gradient problem common in traditional RNNs. LSTMs are widely used in 

applications like natural language processing, time-series analysis, and speech 

recognition. This guide provides a comprehensive introduction to LSTMs, their 

components, and their applications. 

 

 

LSTMs can capture long-term dependencies in sequential data by introducing 

specialized structures called gates. These gates control the flow of information, 

enabling the network to retain important information and forget irrelevant details. 

Key Features of LSTMs 

1. Memory Cell (Ct): 

o Stores long-term information, acting as the core memory of the network. 

2. Gating Mechanisms: 

o Regulate the addition, removal, and retention of information in the 

memory cell. 

o The gates include: 



a) Forget Gate (ft): Decides what information to discard. 

b) Input Gate (it): Decides what new information to store. 

c) Output Gate (ot): Decides what information to output at the 

current step. 

3. Efficient Handling of Long-Term Dependencies: 

o LSTMs are explicitly designed to overcome the limitations of traditional 

RNNs, making them suitable for long sequences. 

LSTM Architecture 

An LSTM cell contains several components designed to manage the flow of 
information: 

a. Forget Gate 

Decides which information to discard from the cell state. 

 

Where: 

• ft: Forget gate output 
• σ: Sigmoid activation function 
• Wf, bf: Weights and bias for the forget gate 
• ht−1: Previous hidden state 
• xt: Current input 

b. Input Gate 

Determines what new information to store in the cell state. 



 

Where: 

• it: Input gate output 

• : Candidate values for cell state 

c. Cell State 

Maintains long-term memory. 

 

d. Output Gate 

Controls what part of the cell state to output as the hidden state. 

 

Where: 

• ot: Output gate output 
• ht: New hidden state 



 

LSTEM Training 

1. LSTM Forward Pass 

1. Receive input xt and previous hidden state ht−1. 
2. Compute gate activations (ft, it, ot). 
3. Update cell state Ct. 
4. Generate new hidden state ht. 

This process repeats for every timestep in the sequence. 

2.LSTM Backward Pass 

The backward pass in an LSTM is crucial for training the network using 
backpropagation through time (BPTT). During the backward pass, gradients of the 
loss with respect to LSTM parameters are computed to update the weights. This 
section provides a detailed breakdown of the backward pass in an LSTM. 

The backward pass computes gradients with respect to: 

1. Loss with respect to cell states (Ct.). 
2. Loss with respect to hidden states (ht ). 
3. Gradients of gates (ft, it, ot,  ). 
4. Gradients of parameters (Wf,Wi,Wo,Wc,bf,bi,bo,bc ). 

The process propagates gradients from the final timestep backward through time. 

 

 

Backward Pass Steps 

1. Compute gradients for ot, ft, it, and . 



2. Accumulate gradients for cell state Ct. 
3. Backpropagate gradients to previous hidden and cell states. 
4. Update weight and bias gradients. 

The backward pass ensures all LSTM parameters are adjusted to minimize the loss 
function, enabling the network to learn long-term dependencies effectively. 

Layers of LSTM 

An LSTM layer consists of multiple LSTM cells stacked to process sequences more 

effectively. Each LSTM layer can be described as follows: 

1. Single LSTM Layer: 

o Processes a single sequence at a time. 

o Useful for simple sequence modeling tasks like time-series forecasting. 

2. Stacked LSTM Layers: 

o Combines multiple LSTM layers, where the output of one layer serves as 

the input to the next. 

o Enables the model to learn hierarchical representations of sequences, 

improving performance on complex tasks like speech recognition or 

machine translation. 

3. Bidirectional LSTM (BiLSTM): 

o Processes sequences in both forward and backward directions, 

capturing context from both past and future inputs. 

4. LSTM with Dropout: 

o Adds dropout regularization to prevent overfitting during training. 

 

 

 

 

 

 



Gated Recurrent Units (GRU) 
 

The Gated Recurrent Unit (GRU) is a simplified variant of the Long Short-Term 

Memory (LSTM) network. GRUs are designed to retain the ability to handle long-

term dependencies in sequential data while simplifying the architecture by reducing 

the number of gates and parameters. GRUs combine the functionalities of the forget 

and input gates into a single gate, making them computationally more efficient than 

LSTMs. 

 

Key Features of GRUs 

1. Simplified Architecture: 

o GRUs have fewer gates compared to LSTMs, making them faster to train 

and computationally lighter. 

2. Update Gate (zt): 

o Controls how much of the past information to keep and how much of the 

new input to incorporate. 

3. Reset Gate (rt): 

o Determines how much of the past information to forget. 

4. Direct Hidden State Update: 

o Unlike LSTMs, GRUs do not maintain a separate memory cell (Ct) and 

instead directly update the hidden state (ht). 

 



GRU Architecture 

A GRU has two primary gates: the Update Gate and the Reset Gate. These gates 
control the flow of information through the network. 

a. Update Gate (zt) 

The update gate determines how much of the previous hidden state (ht−1) to 

retain and how much of the new candidate activation to use. 

 
b. Reset Gate (rt) 

The reset gate determines how much of the previous hidden state to forget. 

 
c. Candidate Activation  

 

The candidate activation computes the potential new hidden state, using the reset 
gate to filter the influence of the past state. 

 
d. Hidden State (ht) 

The hidden state is a combination of the previous state and the candidate 
activation, weighted by the update gate. 

 

 

GRU Training 

1. GRU Forward Pass 

1. Compute the reset gate (rt). 
2. Compute the update gate (zt). 
3. Compute the candidate activation  
4. Update the hidden state (ht). 

This process is repeated for each timestep in the sequence. 



2. GRU Backward Pass 

The backward pass in a GRU involves Backpropagation Through Time (BPTT). 
Gradients are computed for each gate and parameter: 

a. Gradients at Hidden State (ht) 

The gradient of the loss with respect to the hidden state combines contributions 
from: 

• The current timestep's output. 
• The next timestep's backpropagated gradient. 

 
b. Gradients at Update Gate (zt) 

 
c. Gradients at Reset Gate (rt) 

 
 

d. Gradients at Candidate Activation  

 

The chain rule is applied to compute parameter gradients for  

 

Layers of GRUs 

1. Single GRU Layer: 

o Processes a sequence step by step using a single layer of GRU cells. 

o Suitable for simpler tasks like basic time-series forecasting. 

2. Stacked GRU Layers: 



o Multiple GRU layers are stacked, with the output of one layer serving as 

the input to the next. 

o Used for more complex sequence modeling tasks. 

3. Bidirectional GRUs: 

o Processes the input sequence in both forward and backward directions 

to capture full context. 

o Commonly used in natural language processing tasks like sentiment 

analysis and translation. 

4. GRUs with Dropout: 

o Adds regularization to reduce overfitting, especially in large models or 

when the dataset is small. 

Comparison Between RNN, GRU, and LSTM 

Aspect RNN GRU LSTM 

Architecture 
Simple recurrent 

structure 

Gated structure with 

two gates 

Gated structure with 

three gates 

Memory Management 
Relies on hidden states 

alone 

Combines hidden state 

with gates 

Uses separate memory 

cell and gates 

Gates None Update, Reset Forget, Input, Output 

Ability to Handle Long-Term 

Dependencies 

Limited due to 

vanishing gradients 

Good due to gating 

mechanisms 

Excellent due to explicit 

memory cell 

Parameters Few Moderate More 

Computational Complexity Low Moderate High 

Training Speed Fast Faster than LSTM Slower due to complexity 

Performance on Complex 

Sequences 
Poor Competitive 

Better for intricate 

dependencies 

 


