Tikrit University

Computer Science Dept.

Master Degree
Lecture -6-

Assistant Professor

Dr. Eng. Zaidoon. T.AL-Qaysi

College of Computer Science and Mathematics

(2023-2024)

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

Dimensionality Reduction

The number of input variables or features for a dataset is referred to as its dimensionality.
Dimensionality reduction refers to techniques that reduce the number of input variables in a
dataset. More input features often make a predictive modeling task more challenging to model,
more generally referred to as the curse of dimensionality.

High-dimensionality statistics and dimensionality reduction techniques are often used for
data visualization. Nevertheless these techniques can be used in applied machine learning to
simplify a classification or regression dataset in order to better fit a predictive model.

e Large numbers of input features can cause poor performance for machine learning algo-
rithms.

e Dimensionality reduction is a general field of study concerned with reducing the number
of input features.

e Dimensionality reduction methods include feature selection, linear algebra methods,
projection methods, and autoencoders.

Problem With Many Input Variables

The performance of machine learning algorithms can degrade with too many input variables.
If your data is represented using rows and columns, such as in a spreadsheet, then the input
variables are the columns that are fed as input to a model to predict the target variable. Input
variables are also called features. We can consider the columns of data representing dimensions
on an n-dimensional feature space and the rows of data as points in that space. This is a useful
geometric interpretation of a dataset.

Having a large number of dimensions in the feature space can mean that the volume of that
space is very large, and in turn, the points that we have in that space (rows of data) often
represent a small and non-representative sample. This can dramatically impact the performance
of machine learning algorithms fit on data with many input features, generally referred to as the
curse of dimensionality. Therefore, it is often desirable to reduce the number of input features.
This reduces the number of dimensions of the feature space, hence the name dimensionality
reduction.

Dimensionality reduction refers to techniques for reducing the number of input variables in
training data.

High-dimensionality might mean hundreds, thousands, or even millions of input variables.
Fewer input dimensions often mean correspondingly fewer parameters or a simpler structure in
the machine learning model, referred to as degrees of freedom. A model with too many degrees
of freedom is likely to overfit the training dataset and therefore may not perform well on new
data. It is desirable to have simple models that generalize well, and in turn, input data with
few input variables. This is particularly true for linear models where the number of inputs and
the degrees of freedom of the model are often closely related.

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

Feature Selection Methods

Perhaps the most common are so-called feature selection techniques that use scoring or statistical
methods to select which features to keep and which features to delete.

Two main classes of feature selection techniques include wrapper methods and filter methods.
Wrapper methods, as the name suggests, wrap a machine learning model, fitting and evaluating
the model with different subsets of input features and selecting the subset the results in the best
model performance. RFE is an example of a wrapper feature selection method. Filter methods
use scoring methods, like correlation between the feature and the target variable, to select a
subset of input features that are most predictive. Examples include Pearson’s correlation and
Chi-Squared test.

Matrix Factorization

Techniques from linear algebra can be used for dimensionality reduction. Specifically, matrix
factorization methods can be used to reduce a dataset matrix into its constituent parts. Examples
include the eigendecomposition and singular value decomposition. The parts can then be ranked
and a subset of those parts can be selected that best captures the salient structure of the
matrix that can be used to represent the dataset. The most common method for ranking the
components is principal components analysis, or PCA for short.

Manifold Learning

Techniques from high-dimensionality statistics can also be used for dimensionality reduction.
In mathematics, a projection is a kind of function or mapping that transforms data
in some way.

These techniques are sometimes referred to as manifold learning and are used to create a
low-dimensional projection of high-dimensional data, often for the purposes of data visualization.
The projection is designed to both create a low-dimensional representation of the dataset whilst
best preserving the salient structure or relationships in the data. Examples of manifold learning
techniques include:

¢ Kohonen Self-Organizing Map (SOM).

e Sammons Mapping

e Multidimensional Scaling (MDS)

e t-distributed Stochastic Neighbor Embedding (t-SNE).

The features in the projection often have little relationship with the original columns, e.g.
they do not have column names, which can be confusing to beginners.

Autoencoder Methods

An auto-encoder is a kind of unsupervised neural network that is used for dimen-
sionality reduction and feature discovery. More precisely, an auto-encoder is a
feedforward neural network that is trained to predict the input itself.

After training, the decoder is discarded and the output from the bottleneck is used directly
as the reduced dimensionality of the input. Inputs transformed by this encoder can then be fed
into another model, not necessarily a neural network model.

Deep autoencoders are an effective framework for nonlinear dimensionality reduction.
Once such a network has been built, the top-most layer of the encoder, the code
layer hc, can be input to a supervised classification procedure.

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

Matrix Decomposition

A matrix decomposition is a way of reducing a matrix into its constituent parts. It is an approach that
can simplify more complex matrix operations that can be performed on the decomposed matrix rather
than on the original matrix itself. A common analogy for matrix decomposition is the factoring of
numbers, such as the factoring of 10 into 2 x 5. For this reason, matrix decomposition is also called
matrix factorization. Like factoring real values, there are many ways to decompose a matrix, hence
there are a range of different matrix decomposition techniques. Two simple and widely used matrix

decomposition methods are the LU matrix decomposition and the QR matrix decomposition.

The LU decomposition is for square matrices and decomposes a matrix into L and U components.

A=L-U

Or, without the dot notation.

A=LU

Where A is the square matrix that we wish to decompose, L is the lower triangle matrix
and U is the upper triangle matrix.

The factors L and U are triangular matrices. The factorization that comes from
elimination is A = LU.

The LU decomposition is found using an iterative numerical process and can fail for those
matrices that cannot be decomposed or decomposed easily. A variation of this decomposition
that is numerically more stable to solve in practice is called the LUP decomposition, or the LU
decomposition with partial pivoting.

A=L-U-P
The rows of the parent matrix are re-ordered to simplify the decomposition process and the
additional P matrix specifies a way to permute the result or return the result to the original
order. There are also other variations of the LU. The LU decomposition is often used to simplify
the solving of systems of linear equations, such as finding the coefficients in a linear regression,
as well as in calculating the determinant and inverse of a matrix.

The LU decomposition can be implemented in Python with the 1u() function. More
specifically, this function calculates an LPU decomposition. The example below first defines a
3x 3 square matrix. The LU decomposition is calculated, then the original matrix is reconstructed
from the components.

Lecture 6

Data Science

Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

LU decomposition
from numpy import array
from scipy.linalg import lu
define a square matrix
A = array([
[1, 2, 3],
(4, 5, 6],
(7, 8, 911)
print(A)
factorize
P, L, U = 1u(d)
print (P)
print (L)
print (U)
reconstruct
B = P.dot (L) .dot(U)
print(B)

([1 2 3]
[4 5 6]
[7 8 9]]
([o. 1.
[o.
[1.

o = O
R

0. 0.1]

[0. 0.]

[1.
[0.14285714 1. 0.]
[0.57142857 0.5 1. 1]

([7.00000000e+00 8.00000000e+00 9.00000000e+00]
[0.00000000e+00 8.57142857e-01 1.71428571e+00]
[0.00000000e+00 0.00000000e+00 -1.58603289e-16]]

([1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]

Examplel: Sample output from calculating LU decomposition

QR Decomposition

The QR decomposition is for n x m matrices (not limited to square matrices) and decomposes
a matrix into) and R components.

A=Q-R

Or, without the dot notation.

A=QR

Where A is the matrix that we wish to decompose, () a matrix with the size m x m, and R is
an upper triangle matrix with the size m x n. The QR decomposition is found using an iterative
numerical method that can fail for those matrices that cannot be decomposed, or decomposed
easily. Like the LU decomposition, the QR decomposition is often used to solve systems of
linear equations, although is not limited to square matrices.

The QR decomposition can be implemented in NumPy using the qr() function. By default,
the function returns the () and R matrices with smaller or reduced dimensions that is more

economical. We can change this to return the expected sizes of m x m for @ and m x n for
R by specifying the mode argument as ‘complete’, although this is not required for most
applications. The example below defines a 3 x 2 matrix, calculates the QR decomposition, then
reconstructs the original matrix from the decomposed elements.

4

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

(R decomposition
from numpy import array
from numpy.linalg import gr
define rectangular matrix
A = array([

(1, 21,

(3, 41,

5, 611)
print(A)
factorize
Q, R = qr(A, 'complete')
print(Q)
print(R)
reconstruct
B = Q.dot(R)
print(B)

[t 2]
[3 4]
[5 611

[[-0.16903085 0.89708523 0.40824829]
[-0.50709255 0.27602622 -0.81649658]
[-0.84515425 -0.34503278 0.40824829]]

[[-5.91607978 -7.43735744]
[o. 0.82807867]
[o. 0. 1]
1. 2.1

[3. 4.]

[5. 6.1]

Example 2:Sample output from calculating QR decomposition

Cholesky Decomposition

The Cholesky decomposition is for square symmetric matrices where all values are greater than
zero, so-called positive definite matrices. For our interests in machine learning, we will focus on
the Cholesky decomposition for real-valued matrices and ignore the cases when working with
complex numbers. The decomposition is defined as follows:

A=L-L7

Or without the dot notation:

A=LLT

Where A is the matrix being decomposed, L is the lower triangular matrix and LT is the
transpose of L. The decompose can also be written as the product of the upper triangular
matrix, for example:

A=UT.U

Where U is the upper triangular matrix. The Cholesky decomposition is used for solving
linear least squares for linear regression, as well as simulation and optimization methods. When
decomposing symmetric matrices, the Cholesky decomposition is nearly twice as efficient as the
LU decomposition and should be preferred in these cases.

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

The Cholesky decomposition can be implemented in NumPy by calling the cholesky()
function. The function only returns L as we can easily access the L transpose as needed. The
example below defines a 3 x 3 symmetric and positive definite matrix and calculates the Cholesky
decomposition, then the original matrix is reconstructed.

Cholesky decomposition
from numpy import array
from numpy.linalg import cholesky
define symmetrical matrix
A = array([

[2; 1’ 1]’

[1; 2’ 1]’

(1, 1, 21D
print (4)
factorize
L = cholesky(A)
print (L)
reconstruct
B = L.dot(L.T)
print (B)

[[2 1 1]
[1 2 1]
(11 2]]

[[1.41421356 0. 0.]
[0.70710678 1.22474487 0.]

[0.70710678 0.40824829 1.15470054]]

[[2. 1. 1.]
(1. 2. 1.]
(1. 1. 2.]]

Example 3:Sample output from calculating Cholesky decomposition.

Eigendecomposition of a Matrix

Eigendecomposition of a matrix is a type of decomposition that involves decomposing a square
matrix into a set of eigenvectors and eigenvalues.

One of the most widely used kinds of matrix decomposition is called eigendecompo-
sition, in which we decompose a matrix into a set of eigenvectors and eigenvalues.

A vector is an eigenvector of a matrix if it satisfies the following equation.

A-v=Av

This is called the eigenvalue equation, where A is the parent square matrix that we are
decomposing, v is the eigenvector of the matrix, and A is the lowercase Greek letter lambda and
represents the eigenvalue scalar. Or without the dot notation.

Av = v

A matrix could have one eigenvector and eigenvalue for each dimension of the parent matrix.
Not all square matrices can be decomposed into eigenvectors and eigenvalues, and some can
only be decomposed in a way that requires complex numbers. The parent matrix can be shown
to be a product of the eigenvectors and eigenvalues.

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

A=QA-Q

Or, without the dot notation.

A=QAQ™!

Where @) is a matrix comprised of the eigenvectors, A is the uppercase Greek letter lambda
and is the diagonal matrix comprised of the eigenvalues, and Q! is the inverse of the matrix
comprised of the eigenvectors.

However, we often want to decompose matrices into their eigenvalues and eigenvectors.
Doing so can help us to analyze certain properties of the matrix, much as decomposing
an integer into its prime factors can help us understand the behavior of that integer.

Eigen is not a name, e.g. the method is not named after “Eigen”; eigen (pronounced
eye-gan) is a German word that means own or innate, as in belonging to the parent matrix. A
decomposition operation does not result in a compression of the matrix; instead, it breaks it
down into constituent parts to make certain operations on the matrix easier to perform. Like
other matrix decomposition methods, Eigendecomposition is used as an element to simplify the
calculation of other more complex matrix operations.

Almost all vectors change direction, when they are multiplied by A. Certain
exceptional vectors x are in the same direction as Ax. Those are the “eigenvectors”.
Multiply an eigenvector by A, and the vector Az is the number A times the original
z. [...]| The eigenvalue A tells whether the special vector x is stretched or shrunk or
reversed or left unchanged — when it is multiplied by A.

Eigendecomposition can also be used to calculate the principal components of a matrix in the
Principal Component Analysis method or PCA that can be used to reduce the dimensionality
of data in machine learning.

Calculation of Eigendecomposition

An eigendecomposition is calculated on a square matrix using an efficient iterative algorithm, of
which we will not go into the details. Often an eigenvalue is found first, then an eigenvector is
found to solve the equation as a set of coeflicients. The eigendecomposition can be calculated in
NumPy using the eig() function. The example below first defines a 3 x 3 square matrix. The
eigendecomposition is calculated on the matrix returning the eigenvalues and eigenvectors.

eigendecomposition
from numpy import array
from numpy.linalg import eig
define matrix
A = array([

[1, 2, 3],

[4, 5, 6],

(7, 8, 911
print (4)
factorize
values, vectors = eig(A)
print(values)
print(vectors)

[[1 23]
[4 5 6]
[7 8 9]]

[1.61168440e+01 -1.11684397e+00 -9.75918483e-16]
[[-0.23197069 -0.78583024 0.40824829]

[-0.52532209 -0.08675134 -0.81649658]
[-0.8186735 0.61232756 0.40824829]]

Example 4:Sample output from calculating an eigendecomposition.
7
Lecture 6

Data Science

Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

confirm eigenvector
from numpy import array
from numpy.linalg import eig
define matrix
A = array([

(1, 2, 3],

(4, 5, 6],

(7, 8, 911
factorize
values, vectors = eig(A)
confirm first eigenvector
B = A.dot(vectors[:, 0])
print (B)
C = vectors([:, 0] * values[0]
print(C)

[-3.73863537 -8.46653421 -13.19443305]

[-3.73863537 -8.46653421 -13.19443305]

Example 5: Sample output from calculating a confirmation of an eigendecomposition.

reconstruct matrix
from numpy import diag
from numpy.linalg import inv
from numpy import array
from numpy.linalg import eig
define matrix
A = array([
(1, 2, 3],
(4, 5, 6],
(7, 8, 911)
print(A)
factorize
values, vectors = eig(A)
create matrix from eigenvectors
Q = vectors
create inverse of eigenvectors matrix
R = inv(Q)
create diagonal matrix from eigenvalues
L = diag(values)
reconstruct the original matrix
B = Q.dot(L) .dot(R)
print(B)

({1 2 3]
[4 5 6]
[7 8 9]]

1. 2.
4. 5.
7. 8.

(

m e
oo W
PR

Example 6: Sample output from reconstructing a matrix from an eigendecomposition

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi
Singular-Value Decomposition

The Singular-Value Decomposition, or SVD for short, is a matrix decomposition method for reducing a
matrix to its constituent parts in order to make certain subsequent matrix calculations simpler. For the case of

simplicity we will focus on the SVD for real-valued matrices and ignore the case for complex numbers.

A=U.-2.VT

Where A is the real n x m matrix that we wish to decompose, U is an m X m matrix, X
represented by the uppercase Greek letter sigma) is an m x n diagonal matrix, and V7T is the V/
transpose of an n x n matrix where 7' is a superscript.

The Singular Value Decomposition is a highlight of linear algebra.

The diagonal values in the ¥ matrix are known as the singular values of the original matrix
A. The columns of the U matrix are called the left-singular vectors of A, and the columns
of V are called the right-singular vectors of A. The SVD is calculated via iterative numerical
methods.

The SVD can be calculated by calling the svd() function. The function takes a matrix and
returns the U, ¥ and V7 elements. The ¥ diagonal matrix is returned as a vector of singular
values. The V matrix is returned in a transposed form, e.g. V7. The example below defines a
3 x 2 matrix and calculates the singular-value decomposition.

singular-value decomposition
from numpy import array
from scipy.linalg import svd
define a matrix
A = array([
(1, 2],
(3, 4],
(5, 611)
print(4)
factorize
U, s, V= svd(A)
print (U)
print(s)
print (V)

Running the example first prints the defined 3 x 2 matrix, then the 3 x 3 U matrix, 2 element
¥ vector, and 2 x 2 VT matrix elements calculated from the decomposition.
(1 2]

[3 4]
[5 61]

[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]

[9.52551809 0.51430058]

[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]

Example 7: Sample output from calculating singular-value decomposition

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

A popular application of SVD is for dimensionality reduction. Data with a large number of
features, such as more features (columns) than observations (rows) may be reduced to a smaller
subset of features that are most relevant to the prediction problem. The result is a matrix with
a lower rank that is said to approximate the original matrix. To do this we can perform an SVD
operation on the original data and select the top k largest singular values in ¥. These columns
can be selected from ¥ and the rows selected from V7. An approximate B of the original vector
A can then be reconstructed.

B=U-%-VT

In natural language processing, this approach can be used on matrices of word occurrences
or word frequencies in documents and is called Latent Semantic Analysis or Latent Semantic
Indexing. In practice, we can retain and work with a descriptive subset of the data called T'.
This is a dense summary of the matrix or a projection.

T=U-%

Further, this transform can be calculated and applied to the original matrix A as well as
other similar matrices.

T=A-Vl

The example below demonstrates data reduction with the SVD. First a 3 x 10 matrix is
defined, with more columns than rows. The SVD is calculated and only the first two features
are selected. The elements are recombined to give an accurate reproduction of the original
matrix. Finally the transform is calculated two different ways.

data reduction with svd

from numpy import array

from numpy import diag

from numpy import zeros

from scipy.linalg import svd

define matrix

A = array([
[1,2,3,4,5,6,7,8,9,10],
[11,12,13,14,15,16,17,18,19,20],
[21,22,23,24,25,26,27,28,29,30]])

print (A)

factorize

U, s, V= svd(A)

create m x n Sigma matrix

Sigma = zeros((A.shape[0], A.shape[1]))

populate Sigma with n x n diagonal matrix

Sigmal:A.shape[0], :A.shape[0]] = diag(s)

select

n_elements = 2

Sigma = Sigmal:, :n_elements]

V = V[:n_elements, :]

reconstruct

B = U.dot(Sigma.dot(V))

print(B)

transform

T = U.dot(Sigma)

print(T)

T = A.dot(V.T)

print(T)

Example 8: Example of calculating data reduction with the SVD

10
Lecture 6

Data Science

Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

[[12 3 45 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[21 22 23 24 25 26 27 28 29 30]]

[t . 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[11. 12. 13. 14. 15. 16. 17. 18. 19. 20.]

[21. 22. 23. 24. 25. 26. 27. 28. 29. 30.]]

[[-18.52157747 6.47697214]
[-49.81310011 1.91182038]
[-81.10462276 -2.65333138]]

[[-18.52167747 6.47697214]
[-49.81310011 1.91182038]
[-81.10462276 -2.65333138]]

Example 9: Sample output from calculating data reduction with the SVD

The scikit-learn provides a TruncatedSVD class that implements this capability directly. The
TruncatedSVD class can be created in which you must specify the number of desirable features
or components to select, e.g. 2. Once created, you can fit the transform (e.g. calculate V}I)
by calling the fit () function, then apply it to the original matrix by calling the transform()
function. The result is the transform of A called 7" above. The example below demonstrates the

TruncatedSVD class.

svd data reduction in scikit-learn

from numpy import array

from sklearn.decomposition import TruncatedSVD

define matrix

A = array([
[1,2,3,4,5,6,7,8,9,10],
[11,12,13,14,15,16,17,18,19,20],
[21,22,23,24,25,26,27,28,29,30]])

print(A)

create transform

svd = TruncatedSVD(n_components=2)

fit transform

svd.fit(A)

apply transform

result = svd.transform(A)

print(result)

[[1 2 3 4 5 6 7 8 9 10]
[11 12 13 14 15 16 17 18 19 20]
[21 22 23 24 25 26 27 28 29 30]]

[[18.52157747 6.47697214]
[49.81310011 1.91182038]
[81.10462276 -2.65333138]]

Example 10: Sample output from calculating data reduction with the SVD in scikit-learn

11

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

Expected Value and Mean

In probability, the average value of some random variable X is called the expected value or the
expectation. The expected value uses the notation E with square brackets around the name of
the variable; for example:

E[X]

It is calculated as the probability weighted sum of values that can be drawn.

E[X] :Z-’ffl X P1,T2 X P2,T3 X P3,*** ,Tn X Pn

In simple cases, such as the flipping of a coin or rolling a dice, the probability of each event is
just as likely. Therefore, the expected value can be calculated as the sum of all values multiplied
by the reciprocal of the number of values.

1
E[X] — ; X le;xbxﬁh’” :-T:n

In statistics, the mean, or more technically the arithmetic mean or sample mean, can be
estimated from a sample of examples drawn from the domain. It is confusing because mean,
average, and expected value are used interchangeably. In the abstract, the mean is denoted by

the lower case Greek letter mu p and is calculated from the sample of observations, rather than
all possible values.

1
p_’_:—){ E Iy, X2,L3, " ,Tn

n
Or, written more compactly:

;.L:P(:}:)XZJ:

Where z is the vector of observations and P(z) is the calculated probability for each value.

When calculated for a specific variable, such as x, the mean is denoted as a lower case variable
name with a line above, called z-bar e.g. 7.

The arithmetic mean can be calculated for a vector or matrix in NumPy by using the mean ()
function. The example below defines a 6-element vector and calculates the mean.

vector mean

from numpy import array
from numpy import mean
define vector

v = array([1,2,3,4,5,6])
print(v)

calculate mean

result = mean(v)
print(result)

[1 2345 6]

3.5

Example 11: Sample output from calculating a vector mean

12
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

The mean function can calculate the row or column means of a matrix by specifying the
axis argument and the value 0 or 1 respectively. The example below defines a 2 x 6 matrix and
calculates both column and row means.

matrix means
from numpy import array
from numpy import mean
define matrix
M = array([
[1,2,3,4,5,6],
[1,2,3,4,5,6]])
print (M)
column means
col_mean = mean(M, axis=0)
print(col_mean)
row means
row_mean = mean(M, axis=1)
print(row_mean)

[[1 23 45 6]
[1 2345 6]]
[1. 2. 3. 4. 5. 6.]

[3.5 3.5]

Example 12: Sample output from calculating matrix means

Variance and Standard Deviation

In probability, the variance of some random variable X is a measure of how much values in the
distribution vary on average with respect to the mean. The variance is denoted as the function
Var() on the variable.

Var[X]

Variance is calculated as the average squared difference of each value in the distribution
from the expected value. Or the expected squared difference from the expected value.

Var[X] = E[(X — E[X])?]

Assuming the expected value of the variable has been calculated (E[X]), the variance of the
random variable can be calculated as the sum of the squared difference of each example from
the expected value multiplied by the probability of that value.

Var[X] = 3" p(a1) x (a1 — E[X]))2,p(x2) x (23 — EIX]) -~ ,p(x,) x (, — E[X])?

If the probability of each example in the distribution is equal, variance calculation can drop
the individual probabilities and multiply the sum of squared differences by the reciprocal of the
number of examples in the distribution.

Var(X] = % X Z(:}:l — E[X])?, (z2 — E[X])%,-++ , (zn — E[X])?

In statistics, the variance can be estimated from a sample of examples drawn from the
domain. In the abstract, the sample variance is denoted by the lower case sigma with a 2
superscript indicating the units are squared (e.g. ¢?), not that you must square the final value.

13
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

In NumPy, the variance can be calculated for a vector or a matrix using the var () function.
By default, the var () function calculates the population variance. To calculate the sample
variance, you must set the ddof argument to the value 1. The example below defines a 6-element
vector and calculates the sample variance.

vector variance

from numpy import array
from numpy import var

define vector

v = array([1,2,3,4,5,6])
print(v)

calculate variance
result = var(v, ddof=1)
print (result)

[123 45 6]

3.5

Example 13: Example of calculating a vector variance.

matrix variances
from numpy import array
from numpy import var
define matrix
M = array([
[1,2,3,4,5,6],
[1,2,3,4,5,6]])
print (M)
column variances
col_var = var(M, ddof=1, axis=0)
print (col_var)
row variances
row_var = var(M, ddof=1, axis=1)
print (row_var)

[[1 23

4 5 6]
[1 2345 6]

6]]
[L0. 0. 0. 0. 0. 0.]

[3.5 3.5]

Example 14: Sample output from calculating matrix variances.

The standard deviation is calculated as the square root of the variance and is denoted as

lowercase s.
s =Vo?

To keep with this notation, sometimes the variance is indicated as s2, with 2 as a superscript,
again showing that the units are squared. NumPy also provides a function for calculating
the standard deviation directly via the std() function. As with the var() function, the ddof
argument must be set to 1 to calculate the unbiased sample standard deviation and column and
row standard deviations can be calculated by setting the axis argument to 0 and 1 respectively.
The example below demonstrates how to calculate the sample standard deviation for the rows
and columns of a matrix.

14
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

matrix standard deviation
from numpy import array
from numpy import std
define matrix
M = array([

[1,2,3,4,5,6],

[1,2,3,4,5,6]])
print (M)
column standard deviations
col_std = std(M, ddof=1, axis=0)
print(col_std)
row standard deviations
row_std = std(M, ddof=1, axis=1)
print (row_std)

[[1 2345 6]
[1 2345 6]]

[0. 0. 0. 0. 0. 0.]

[1.87082869 1.87082869]

Example 15: Sample output from calculating matrix standard deviations

Covariance and Correlation

In probability, covariance is the measure of the joint probability for two random variables. It
describes how the two variables change together. It is denoted as the function cov(X,Y’), where
X and Y are the two random variables being considered.

cov(X,Y)

Covariance is calculated as expected value or average of the product of the differences of
each random variable from their expected values, where E[X] is the expected value for X and
E[Y] is the expected value of y.

cov(X,Y) = E[(X — E[X] x (Y — E[Y])]

Assuming the expected values for X and Y have been calculated, the covariance can be
calculated as the sum of the difference of x values from their expected value multiplied by the
difference of the y values from their expected values multiplied by the reciprocal of the number
of examples in the population.

cou(X,Y) = ?11, 3 (@ — E[X]) x (y — E[Y])

In statistics, the sample covariance can be calculated in the same way, although with a bias
correction, the same as with the variance.

1
n—1

cov(X,Y) = X Z(:r — E[X]) x (y— E[Y])

The sign of the covariance can be interpreted as whether the two variables increase together
(positive) or decrease together (negative). The magnitude of the covariance is not easily
interpreted. A covariance value of zero indicates that both variables are completely independent.
NumPy does not have a function to calculate the covariance between two variables directly.
Instead, it has a function for calculating a covariance matrix called cov() that we can use to
retrieve the covariance. By default, the cov()function will calculate the unbiased or sample
covariance between the provided random variables.

The example below defines two vectors of equal length with one increasing and one decreasing.
We would expect the covariance between these variables to be negative. We access just the
covariance for the two variables as the [0, 1] element of the square covariance matrix returned.

15
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

vector correlation

from numpy import array

from numpy import corrcoef

define first wvector

x = array([1,2,3,4,5,6,7,8,9])
print (x)

define second vector

y = array([9,8,7,6,5,4,3,2,1])
print (y)

calculate correlation

corr = corrcoef(x,y)[0,1]
print{corr)

[1234567849]
[987654321]

-1.0

Examplel6: Sample output from calculating vector correlation

Covariance Matrix

The covariance matrix is a square and symmetric matrix that describes the covariance between
two or more random variables. The diagonal of the covariance matrix are the variances of each
of the random variables, as such it is often called the variance-covariance matrix. A covariance
matrix is a generalization of the covariance of two variables and captures the way in which all
variables in the dataset may change together. The covariance matrix is denoted as the uppercase
Greek letter Sigma, e.g. . The covariance for each pair of random variables is calculated as
above.

¥ = E[(X - E[X] x (Y = E[Y])]
Where:

Ei_}' = COU(XE'.J Xj)

And X is a matrix where each column represents a random variable. The covariance matrix
provides a useful tool for separating the structured relationships in a matrix of random variables.
This can be used to decorrelate variables or applied as a transform to other variables. Tt is a key
element used in the Principal Component Analysis data reduction method, or PCA for short.

The covariance matrix can be calculated in NumPy using the cov() function. By default,
this function will calculate the sample covariance matrix. The cov() function can be called with
a single 2D array where cach sub-array contains a feature (e.g. column). If this function is called
with your data defined in a normal matrix format (rows then columns), then a transpose of the
matrix will need to be provided to the function in order to correctly calculate the covariance of
the columns. Below is an example that defines a dataset with 5 observations across 3 features
and calculates the covariance matrix.

16
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

covariance matrix
from numpy import array
from numpy import cov
define matrix of observations
X = array([
[1, 5, 8],
[3, 5, 111,
[2, 4, 9],
[3, 6, 101,
[1, 5, 101D
print (X)
calculate covariance matrix
Sigma = cov(X.T)
print(Sigma)

5 8]
5 11]
4 9]
6 10]
5 10]]

W N W e

[[1. 0.25 0.75]
.25 0.5 0.25]
[0.75 0.25 1.3 1]

™/
(=]

Example 17: Sample output from calculating a covariance matrix

Principal Component Analysis

Principal Component Analysis, or PCA for short, is a method for reducing the dimensionality
of data. It can be thought of as a projection method where data with m-columns (features) is
projected into a subspace with m or fewer columns, whilst retaining the essence of the original
data. The PCA method can be described and implemented using the tools of linear algebra.

PCA is an operation applied to a dataset, represented by an n x m matrix A that results in a
projection of A which we will call B. Let’s walk through the steps of this operation.

apl a12

A= dsy1 a2
azy1 az2

B = PCA(A)

The first step is to calculate the mean values of each column.

M = mean(A)

Next, we need to center the values in each column by subtracting the mean column value.

C=A-M

The next step is to calculate the covariance matrix of the centered matrix C'. Correlation
is a normalized measure of the amount and direction (positive or negative) that two columns
change together. Covariance is a generalized and unnormalized version of correlation across
multiple columns. A covariance matrix is a calculation of covariance of a given matrix with
covariance scores for every column with every other column, including itself.

17
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

V = cov(C)

Finally, we calculate the eigendecomposition of the covariance matrix V. This results in a
list of eigenvalues and a list of eigenvectors.

values,vectors = eig(V)

The eigenvectors represent the directions or components for the reduced subspace of B,
whereas the eigenvalues represent the magnitudes for the directions. The eigenvectors can be
sorted by the eigenvalues in descending order to provide a ranking of the components or axes of
the new subspace for A. If all eigenvalues have a similar value, then we know that the existing
representation may already be reasonably compressed or dense and that the projection may
offer little. If there are eigenvalues close to zero, they represent components or axes of B that
may be discarded. A total of m or less components must be selected to comprise the chosen
subspace. Ideally, we would select £ eigenvectors, called principal components, that have the k
largest eigenvalues.

B = select(values, vectors)

Other matrix decomposition methods can be used such as Singular-Value Decomposition,
or SVD. As such, generally the values are referred to as singular values and the vectors of the
subspace are referred to as principal components. Once chosen, data can be projected into the
subspace via matrix multiplication.

P=BT.A

Where A is the original data that we wish to project, B is the transpose of the chosen
principal components and P is the projection of A. This is called the covariance method for
calculating the PCA, although there are alternative ways to calculate it.

Calculate Principal Component Analysis

There is no pca() function in NumPy, but we can easily calculate the Principal Component
Analysis step-by-step using NumPy functions. The example below defines a small 3 x 2 matrix,
centers the data in the matrix, calculates the covariance matrix of the centered data, and then
the eigendecomposition of the covariance matrix. The eigenvectors and eigenvalues are taken as
the principal components and singular values and used to project the original data.

Running the example first prints the original matrix, then the eigenvectors and eigenvalues
of the centered covariance matrix, followed finally by the projection of the original matrix.
Interestingly, we can see that only the first eigenvector is required, suggesting that we could
project our 3 x 2 matrix onto a 3 x 1 matrix with little loss.

18
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

principal component analysis
from numpy import array
from numpy import mean
from numpy import cov
from numpy.linalg import eig
define matrix
A = array([

1, 21,

[3, 4]'

(5, 611)
print(A)
column means
= mean(A.T, axis=1)
center columns by subtracting column means
=A-M
calculate covariance matrix of centered matrix
= cov(C.T)
factorize covariance matrix
values, vectors = eig(V)
print(vectors)
print(values)
project data
P = vectors.T.dot(C.T)
print(P.T)

TS HQH = H®

[[1 2]
[3 4]
[5 611

[[0.70710678 -0.70710678]
[0.70710678 0.70710678]]

[8. 0.]

[[-2.82842712 0.]

[O. 0.]

[2.82842712 0. 1]

Example 18: Sample output from calculating a PCA manually

Principal Component Analysis in scikit-learn

We can calculate a Principal Component Analysis on a dataset using the PCA() class in the
scikit-learn library. The benefit of this approach is that once the projection is calculated, it can
be applied to new data again and again quite easily. When creating the class, the number of
components can be specified as a parameter. The class is first fit on a dataset by calling the fit ()
function, and then the original dataset or other data can be projected into a subspace with the
chosen number of dimensions by calling the transform() function. Once fit, the singular values
and principal components can be accessed on the PCA class via the explained_variance_ and
components_ attributes. The example below demonstrates using this class by first creating an
instance, fitting it on a 3 x 2 matrix, accessing the values and vectors of the projection, and
transforming the original data.

19
Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

principal component analysis with scikit-learn
from numpy import array
from sklearn.decomposition import PCA
define matrix
A = array([
1, 21,
(3, 41,
(5, 6]11)
print(A)
create the transform
pca = PCA(2)
fit transform
pca.fit (A)
access values and vectors
print(pca.components_)
print(pca.explained_variance_)
transform data
B = pca.transform(4)
print(B)

[[1 2]
[3 4]
[5 611

[[0.70710678 0.70710678]
[0.70710678 -0.70710678]]

[8.00000000e+00 2.25080839e-33]
[[-2.82842712e+00 2.22044605e-16]

[0.00000000e+00 0.00000000e+00]
[2.82842712e+00 -2.22044605e-16]]

Example19: Sample output from calculating a PCA with scikit-learn

evaluate pca with logistic regression algorithm for classification

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.pipeline import Pipeline

from sklearn.decomposition import PCA

from sklearn.linear model import LogisticRegression

define dataset

X, y= make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5,
random_state=7)

define the pipeline

steps = [('pca', PCA(n_components=10)), ('m', LogisticRegression())]

model = Pipeline(steps=steps)

evaluate model

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)

report performance

print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

Accuracy: 0.816 (0.034)

Example 20: output from evaluating a model on data prepared with PCA transform

20

Lecture 6

Data Science Asst.Prof.Dr.Eng.Zaidoon.T.AL-Qaysi

compare pca number of components with logistic regression algorithm for classification
from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.pipeline import Pipeline

from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

from matplotlib import pyplot

get the dataset
def get_dataset():
X, y= make_classification(n_samples=1000, n_features=20, n_informative=15,
n_redundant=5, random_state=T7)
return X, y

get a list of models to evaluate
def get_models():
models = dict()
for i in range(1,21):
steps = [('pca', PCA(n_components=i)), ('m', LogisticRegression())]
models[str(i)] = Pipeline(steps=steps)
return models

evaluate a given model using cross-validation

def evaluate_model(model, X, y):
cv = RepeatedStratifiedKFold(u_splits=10, n_repeats=3, random_state=1)
scores = cross_val_score(model, X, Y, scoring='accuracy', cv=cv, n_jobs=—1)
return scores

define dataset
X, y = get_dataset()
get the models to evaluate
models = get_models()
evaluate the models and store results
results, names = list(), 1list()
for name, model in models.items():
scores = evaluate_model (model, X, y)
results.append(scores)
names . append (name)
print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
plot model performance for comparison
pyplot.boxplot (results, labels=names, showmeans=True)
pyplot.xticks(rotation=45)
pyplot.show()

>1 0.542 (0.048)
>2 0.713 (0.048)
>3 0.720 (0.053)
>4 0.723 (0.051)
>5 0.725 (0.052)
>6 0.730 (0.046)
>7 0.805 (0.036)
>8 0.800 (0.037)
>9 0.814 (0.036)
>10 0.816 (0.034)
>11 0.819 (0.035)
>12 0.819 (0.038)
>13 0.819 (0.035)
>14 0.853 (0.029)
>15 0.865 (0.027)
>16 0.865 (0.027)
>17 0.865 (0.027)
>18 0.865 (0.027)
>19 0.865 (0.027)
>20 0.865 (0.027)

Example 21: Performance with the number of selected components in the PCA transforms

21
Lecture 6

