
COMPUTER
SECURITY

User Authentication and Password Management

(Phishing Attack)
Lecture 5-2

4th stage – (2020-2021)

Dr. Moceheb Lazam Shuwandy

1

CS – CCMS- TU

OUTLINE

• Phishing and online ID Theft

• Phishing pages, server auth, transaction generators, secure

attention sequence

• Two-factor authentication

• Biometrics, one-time pwd tokens

• Server-side password functions

• Ruby-on-Rails, pwd registration, email confirmation,

OpenID

2

PHISHING ATTACK

password?

Sends email: “There is a problem
with your eBuy account”

User clicks on email link
to www.ebuj.com.

User thinks it is ebuy.com, enters
eBuy username and password.

Password sent
to bad guy

3

TYPICAL PROPERTIES OF SPOOF
SITES

• Show logos found on the honest site

• Copied jpg/gif file, or link to honest site

• Have suspicious URLs

• Ask for user input

• Some ask for CCN, SSN, mother’s maiden name, …

• HTML copied from honest site

• May contain links to the honest site

• May contain revealing mistakes

• Short lived

• Cannot effectively blacklist spoof sites

• HTTPS uncommon

SPOOFGUARD BROWSER
EXTENSION

• SpoofGuard is added to IE tool bar

• User configuration

• Pop-up notification as method of last resort

BROWSER ANTI-PHISHING FILTERS

• Major browsers use antiphishing measures

• Microsoft antiphishing and anti-malware tool for IE

• Firefox – combination of tools, including Google

• Opera uses Haute Secure to provide bogus site

warnings to end users

• Google – own antiphishing technology in Chrome

• Apple added antiphishing to Safari 3.2 (Nov ‘08)

6

7

BERKELEY: DYNAMIC SECURITY
SKINS

• Automatically customize secure windows

• Visual hashes

• Random Art - visual hash algorithm

• Generate unique abstract image for each authentication

• Use the image to “skin” windows or web content

• Browser generated or server generated

8

PASSWORD PHISHING PROBLEM

• User cannot reliably identify fake sites

• Captured password can be used at target site

Bank A

Fake Site

pwdA
pwdA

COMMON PASSWORD PROBLEM

• Phishing attack or break-in at site B reveals pwd at A

• Server-side solutions will not keep pwd safe

• Solution: Strengthen with client-side support

Bank A

pwdA

pwdB

= pwdA

Site B

STANFORD PWDHASH

• Lightweight browser extension

• Impedes password theft

• Invisible to server

• Compute site-specific password that appears

“ordinary” to server that received is

• Invisible to user

• User indicates password to be hashed by alert

sequence (@@) at beginning of pwd

11

PASSWORD HASHING

• Generate a unique password per site
• HMACfido:123(banka.com)  Q7a+0ekEXb
• HMACfido:123(siteb.com)  OzX2+ICiqc

• Hashed password is not usable at any other site
• Protects against password phishing
• Protects against common password problem

Bank A

Site B

pwdA

pwdB

=

12

MANY TRICKY ISSUES

• Malicious javascript in browser

• Implement keystroke logger, keep scripts from reading user

password entry

• Password reset problem

• Internet café

• Dictionary attacks (defense: added salt)

13

ANTI-PHISHING FEATURES IN IE7

PICTURE-IN-PICTURE ATTACK

RESULTS: IS THIS SITE
LEGITIMATE?

16

WEB TIMING ATTACKS
• Most sites have “Forgot my password” pages

• These pages may leak whether an email is valid at that site

• Identified through outreach to

financial infrastructure company

• Vulnerability found on virtually
every site we tested

• Communicated results, repair
adopted

17

BIOMETRICS
• Use a person’s physical characteristics

• fingerprint, voice, face, keyboard timing, …

• Advantages
• Cannot be disclosed, lost, forgotten

• Disadvantages
• Cost, installation, maintenance

• Reliability of comparison algorithms
• False positive: Allow access to unauthorized person

• False negative: Disallow access to authorized person

• Privacy?

• If forged, how do you revoke?
18

TOKEN-BASED
AUTHENTICATION

• Several configurations and modes of use
• Device produces password, user types into system

• User unlocks device using PIN

• User unlocks device, enters challenge

• Example: S/Key
• User enters string, devices computes sequence

• p0 = hash(string|rand); pi+1 = hash(pi)

• pn placed on server; set counter k = n

• Device can be used n times before reinitializing
• Send pk-1 = to server, set k = k-1

• Sever checks hash(pk-1) = pk , stores pk-1

19

OTHER METHODS (SEVERAL
VENDORS)

• Some complications

• Initial data shared with server

• Need to set this up securely

• Shared database for many sites

• Clock skew

ChallengeTime

function

Time

Initial data

20

CMU PHOOLPROOF PREVENTION

• Eliminates reliance on perfect user behavior

• Protects against keyloggers, spyware.

• Uses a trusted mobile device to perform mutual authentication

with the server

password?

RUBY-ON-RAILS

• No built-in authentication framework

• restful-authentication, Authlogic, Clearance

• Basic features

• Registration of new users; validation by email address (optional)

• Login – session creation

• Logout – session destruction

• Password recovery or reset

• Additional considerations

• Hashing and/or encryption of user passwords

• One-time or persistent tokens for cookies and validation emails

• Multiple session support

• Administrative controls

• IP & login logging and other miscellaneous record keeping

• Support for authentication platforms such as OpenID

22

RESTFUL AUTHENTICATION

• Basic features

• Login and logout

• Secure password handling

• Account activation by validating email

• Account approval and disabling by email

• Rudimentary hooks for authorization and access control

• Implementation

• Uses Salt and SHA1 hash function

23

AUTHLOGIC

• May have some advantages

• AuthLogic may do a better job of expiring sessions on the server

side if the user's password changes or a time span elapses

• Limits consequences of so an XSS exploit, other attacks

24

OPENID

25

OPENID STEPS

1. User is presented with OpenID login form by the Consumer

2. User responds with the URL that represents their OpenID

3. Consumer canonicalizes the OpenID URL and uses the canonical version to request (GET) a document from the

Identity Server.

4. Identity Server returns the HTML document named by the OpenID URL

5. Consumer inspects the HTML document header for <link/> tags with the attribute rel set to openid.server and,

optionally, openid.delegate. The Consumer uses the values in these tags to construct a URL with mode

checkid_setup for the Identity Server and redirects the User Agent. This checkid_setup URL encodes, among

other things, a URL to return to in case of success and one to return to in the case of failure or cancellation of the

request

6. The OpenID Server returns a login screen.

7. User sends (POST) a login ID and password to OpenID Server.

8. OpenID Server returns a trust form asking the User if they want to trust Consumer (identified by URL) with their

Identity

9. User POSTs response to OpenID Server.

10. User is redirected to either the success URL or the failure URL returned in (5) depending on the User response

11. Consumer returns appropriate page to User depending on the action encoded in the URL in (10)
26

COMMON PWD REGISTRATION
PROCEDURE

Web site

Email provider

User

Send link in email

1

2
5

27

Q&A

28

