
COMPUTER
SECURITY

User Authentication and Password Management

(Hash functions)

Lecture 6
4th stage – (2021-2022)

Dr. Moceheb Lazam Shuwandy

1

CS – CCMS- TU

OUTLINE

• Hash functions

• Plain text

• Encryption

• Hashes

• Salted hashes

• bcrypt

• Multilayer

2

HASH FUNCTIONS

• might have found out that there is a website that checks if online accounts have

been compromised by hackers. So enter in email address and OH NO… have been

pwned! Hackers now know the passwords that used on all these services…

• But do they really know password?

• Well as it turns out: that might not be the case… To understand why, let’s take a look

at what options companies have to protect password and safely store it so that even

when hackers get access to their systems, your password stays safe.

3

https://haveibeenpwned.com/

HASH FUNCTIONS..CON.

• There are 3 ways a company can store password: they store it in

plain text, use encryption on it or use what’s called a hash

function.

• Let’s quickly go over each one of these and let’s start with the

most basic one: plain text.

4

PLAIN TEXT

• This is obviously the most dangerous way of storing passwords. If

hackers breach a company’s database, they get to see all the

passwords of the users.

• And since a lot of people have the bad habit of using the same

password for multiple accounts, it’s likely that 1 compromised

password could lead to more compromised accounts.

• You might think that companies aren’t silly and that none of them

stores our passwords in plain text. However, would be very wrong in

thinking that. Past breaches have shown us that even top companies

and services with millions of users weren’t adequately protecting user

passwords.

5

ENCRYPTION

• One possible alternative to plain text storage is encryption. Take the passwords of the

users and - before store them - encrypt them with an encryption key.

• This would prevent hackers from obtaining the real passwords of users but it’s still quite

risky. Underneath the encryption layer is still a plain text password and so if the attacker

manages to steal the encryption key as well, he can unlock all passwords.

• Encryption is designed to work in two ways: can encrypt a user’s passwords to keep it

safe but can also decrypt it to reveal the password again.

• This is very practical when you want to share data in a secure way, but not great if want to

prevent attackers from breaching your password.

• And that brings us to the third technique of storing passwords and that is by using a hash

function.

6

HASHES

• How does that work? Well, hash functions take an input, that could be a piece of text like password or it

could be a file and turns that into a string of text that always has the same length.

• There are many different hash functions available but here is what the SHA3 hash

32400b5e89822de254e8d5d94252c52bdcb27a3562ca593e980364d9848b8041b98eabe16c1a6797484941d2

376864a1b0e248b0f7af8b1555a778c336a5bf48

• Hash functions are very different from encryption because they only work in 1-way. can calculate the

hash of a password but cannot take a hash and turn it back into the original data.

• And that’s an interesting property to have. By using hashes, companies can verify that logging in with

the correct password, without having to store actual password.

• can compare hashes to fingerprints. can take the fingerprint of any person BUT if find a fingerprint

somewhere can’t identify the person it belongs to unless seen that print before!

7

HASHES CON.

• However, they aren’t perfect either. Most hashing algorithms are optimized for speed, the

more hashes per second they can calculate, the better. And that makes them vulnerable

against brute-force attacks. By simply trying to calculate every possible password, an

attacker can reverse the hash function.

• A modern GPU can do this with a speed of 292 million hashes per second (292.2 MH/s) so

it’s only a matter of time before a hashed password is cracked using this technique. And if

that’s not fast enough, attackers can also use Rainbow tables to further accelerate the

process. These are lists of precomputed hashes that can be used to quickly find weak and

commonly used passwords.

• The speed of hashing functions is a positive thing in certain area’s. However, when it

comes to storing passwords you don’t want this property. The second problem happens

when users share the same password. If both Alice and Bob have the password “qwerty”,

the hashes of their passwords will be identical.
8

HASHES CON.

• So when a hacker cracks of these passwords, he also knows the others. Now might think:

that’s not a big deal because it’s very unlikely that different people will use the same

password. Well, think again. The password “qwerty” has been found more than 3 million

times in data breaches. To make matters even worse: here’s the top 10 most used

password in 2017… Not the strongest of passwords….

9

SALTED HASHES

• To defend against these attacks we can add what’s called a salt to the password before we hash it. The

salt is just some random data but it ensures that the hash of your password will always be unique, even

if others are using the same password.

• So if Bob and Alice both use the password “qwerty” their hashes will be completely different. So if an

attacker cracks Bob’s password, he can’t link that password to Alice and he has to start his cracking

attempt again.

salt 1 = VNc4BdR20n

hash 1 = HASH("qwerty" + salt1)

ac03c0fedc8ee79647bc4420b195110846b85a6025e5a591ccc54fcd42ac583f7dc9b4dcb5aecafceb88c3d5cad1

9f1dfcabde88c454519d597029210b3ba52e

salt 2 = zWQC6kf6n1

hash 2 = HASH("qwerty" + salt2)

1623aa55d09a128224db5a9e94ae48f9d065c8b95da1e5919d5b516f701467582e4784e8bb8eeb76ac757f3337c

5b1443303a6da60371810eff25e77f0987e6f 10

SALTED HASHES CON.

• This technique prevents attackers from cracking a bunch of passwords in 1

go. It makes a brute force attack slower, but still very much possible.

11

BCRYPT

• So to solve this, we have to take a look at the third technique, which is using

special hash functions that are deliberately being slowed down.

• Example of these are bcrypt, scrypt or argon2 and they completely neutralize

brute force attacks.

• These algorithms take a password as input along with a salt and a cost. This last

one is very interesting: the cost defines the number of rounds the algorithm

goes through and this effectively slows it down. Over time our computers

become faster and so brute force attacks against these algorithms becomes

easier.

• That’s because they can simply try more combinations in a shorter timespan.

All we have to do to counter this is increase the cost parameter so the

algorithm remains resistant against these attacks. Pretty genius!

12

MULTILAYER

• So that are the 3 options that a company has to store and protect your passwords. But why settle

for just one method if we can use multiple?

• can’t be greedy enough when it comes to security!

• This multi-layer protection is used by Dropbox for instance. They take password and start by

running it through a simple hash function, no salt. This is their first line of defense. They then

take the hash and run it through the bcrypt algorithm with a salt and a cost of 10.

• This prevents brute-force attacks. And finally, the resulting hash is encrypted with the Advanced

Encryption Standard or AES. The encryption key for this is not stored in their databases but is

instead kept separately.

• So if an attackers breach the Dropbox database they will have to peel away each protective

layer around password and that will take a lot of time. In fact, the cracking attempt would likely

be more costly than what they’d in return for comprising your account.

13

Q&A

14

