COMPUTER SECURITY

Securing communications

Lecture 4

4th stage – (2021-2022)

Dr. Moceheb Lazam Shuwandy

COMPUTER SECURITY AND COMMUNICATIONS

Securing communications

- Three steps:
 - Secrecy = prevent understanding of intercepted communication
 - Authentication = establish identity of sender
 - Integrity = establish that communication has not been changed

SECURING COMMUNICATIONS

COMMUNICATIONS SECURITY ISSUES

- Encryption How do I ensure the secrecy of my transactions?
- Authentication How do I verify the true identity of my counterparts?
- Integrity How can I be sure the message hasn't been altered?

ENCRYPTION- TRADITIONAL CRYPTOGRAPHY

CEASAR'S CIPHER: ENCRYPTION BY SUBSTITUTION

• Substitute for each letter (block of bits)

IBM

Encrypt: each letter goes to previous letter in the alphabet HAL

- How can you crack a substitution cipher?
 - I.e., how can you guess the key?

PUBLIC-KEY CRYPTOGRAPHY

PUBLIC KEY CRYPTOGRAPHY..CON.

Secret key cryptography: Based on a secret key

 Same secret key used for encryption and decryption
 Problem: How to transmit key securely on the Internet???

 Public key cryptography: Two keys used

 Public key known to everybody. Used for encryption.
 Private key known only to owner. Used for decryption.

Alice

{Message} encrypted using Bob's public key

Only Bob who knows the corresponding private key can decrypt

PUBLIC KEY CRYPTOGRAPHY WORKS IF...

Private key remains secret

- Never leaves the owner's computer
- Typically encrypted and password-protected
- Difficult to guess private key from knowledge of public key
 - Boils down to trying all different key combinations
 - Difficulty of "breaking" the code rises exponentially with the bit length of the key
 - 1024-bit keys require more time than the life of the universe in order to be "broken"
- Reliable public key distributed
 - o This is the most difficult problem!

ENCRYPTION IS NOT ENOUGH: SPOOFS

- Pretending to be someone else
- Hard to login without someone's password
- But can send out communications with someone else's name on it
 - o email
 - 1993: Dartmouth sent a message saying midterm exam was cancelled
 - Message appeared to come from the Professor!

NEEDED: MESSAGE AUTHENTICATION

- Make sure Bob gets the message unaltered
- Don't let Alice deny sending the message

- Don't care about eavesdropper Darth, unless Darth changes the message
- How can cryptography help?

DIGITAL SIGNATURES

- Key property: Public and private keys can be applied in either order
- Alice has message M
 - She applies her private key to it
 - She sends encrypted message to Bob
- Bob decrypts it with Alice's public key
 - gets back original message
 - infers that Alice is indeed the sender (since only Alice has the private key that corresponds to her public key)
- In that way, encrypting a message with one's private key acts as a digital signature!

PUBLIC KEY MANAGEMENT

Public key cryptography works as long as

- Private key is really kept secret
- Hard to compute private key from public key
- Get the correct public key from some trusted source
- Bob can send public key over insecure communication channel

But how do you know Darth didn't send you his key instead?

A CENTRAL KEY DISTRIBUTOR

- Alice asks the distributor for Bob's public key
- The distributor sends it to Alice and "digitally signs" it
- Alice knows the key came from the distributor

 Now just have to be sure that the distributor is honest and got Bob's key from Bob, not Darth
- Requires one secure communication per user
 ✓ Bob sends public key to distributor when he joins the system
- Secret keys require secure communication between every pair of users

PUBLIC KEY INFRASTRUCTURE (PKI)

- Certificate Authorities are Trusted Third Parties charged with the responsibility to generate trusted certificates for requesting individuals organizations
 - Certificates contain the requestors public key and are digitally signed by the CA
 - Before a certificate is issued, CA must verify the identity of the requestor
- These certificates can then facilitate automatic authentication of two parties without the need for out-of-band communication

CERTIFICATES

- Used to certify a user's identity to another user
 - The certificate issuer's name
 - Who the certificate is being issued for (a.k.a the subject)
 - The public key of the subject
 - Some time stamps
- Digitally signed by issuer
- Issuer must be a trusted entity
- All users must have a reliable public key of the issuer
 - in order to verify signed certificate

WEB BROWSERS

• They come with a number of certificates already installed

Certificates				×
Intended purpose: <all></all>				
Personal Other People Intermediate Certification Authorities Trusted Root Certification				ior
Issued To	Issued By	Expiratio	. Friendly Name	^
AlphaSSL CA - SHA	GlobalSign Root CA	2/20/2024	<none></none>	
COMODO RSA Cert AAA Certificate Services		2/12/2029	<none></none>	
	. COMODO RSA Certific	12/3/2029	<none></none>	
CPanel, Inc. Certific	. COMODO RSA Certific	5/18/2025	<none></none>	
DigiCert Assured ID	. DigiCert Assured ID R	2/10/2026	<none></none>	
DigiCert Cloud Serv	DigiCert Global Root CA	8/4/2030	<none></none>	
DigiCert EV Code Si	DigiCert High Assuran	4/18/2027	<none></none>	
DigiCert SHA2 Assu	DigiCert Assured ID R	10/22/202	8 <none></none>	×
Import Remove Advanced				
Certificate intended purposes				
			Viev	V
			C	lose

PKI INDUSTRY

- Main players: trusted third party CAs
 - Verisign
 - Entrust
 - Cybertrust
 - RSA
- Revenue from
 - products (PKI servers for intranets and extranets)
 - services (certificate services for individuals and organizations)

SUMMARY – PERSONAL COMMUNICATIONS

A wants to send an encrypted message to B, including digital signature of A

1)A recalls public key of **B** from **CA**

2)CA sends public key of B to A

3)A applies its private key to the message and sends it encrypted by public key of B

4)Reception by **B**

5)B decrypts message with its own private key

6)B recalls A's public key from CA

7)CA sends public key of A to B, assuring the message was sent by A

APPLICATIONS: ECOMMERCE SECURITY

- Needed to transmit sensitive information through the Web
 - credit card numbers
 - merchandise orders
- Requirements
 - sender and receiver must authenticate each other before sending any "real" data
 - all "real" data must flow encrypted through the network
 - no intercepted communication can be used to an intruder's advantage

SSL / TLS

- Secure Sockets Layer / Transport Layer Security
- Provides reasonable level of security
- Often used for transactions between consumers and merchants

SSL / TLS...CON.

Negotiate Security Options

Merchant's digital certificate

Customer

Merchant

Random session key generated by customer and encrypted with merchant's public key

Ongoing communication with both parties using session key

APPLICATIONS: VIRTUAL PRIVATE NETWORKS (VPN)

- Secure, private networks that operate over a public network (like the Internet).
 - Messages are confidential
 - Only authorized users can access network
- "Tunneling" --encrypted messages from one protocol are packaged inside another protocol.

