Lecture Nine

Topics that must be covered in this lecture:

- Regular language.
- Properties of Language Classes
- Representation of Languages
- closure properties of regular languages
- Decision properties for regular sets (membership, emptiness, finiteness).

Regular language

Regular language: a language that can be defined by a regular expression is called a regular language.

- If L1 and L2 are regular language there are regular expression r1 and r2 that defined these language, then (r1+r2) is a regular expression that defines the language L1+L2.
- The language L1 L2 can be defined by the regular expression r1 r2.
- The language L1* can be defined by the regular expression r1*.

Therefore, all these set of words are definable by regular expressions and so are themselves regular languages.

Languages Accepted by FAs

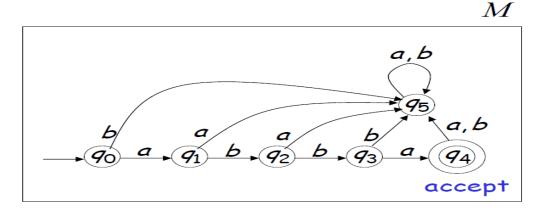
Definition:

The language L(M) contains all input strings accepted by FA M.

L(M)= { strings that drive to a final state}

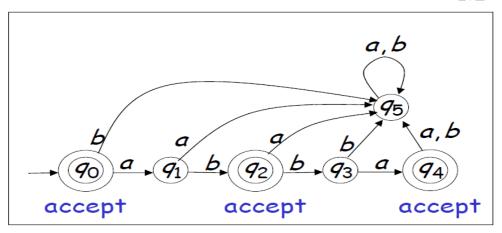
Example:

1- Let L(M)={abba}

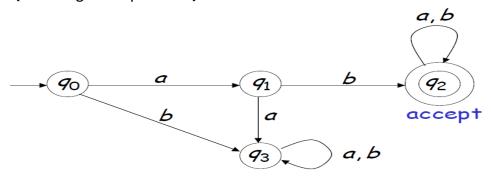


2- L(M)={ λ ,ab,abba}

M



3- L(M)= { all strings with prefix ab}



Representation of Languages

- □ Representations can be formal or informal.
- □ Example (formal): represent a language by a RE or FA defining it.
- □Example: (informal): a logical or prose statement about its strings:
- \Box {0ⁿ1ⁿ | n is a nonnegative integer}
- "The set of strings consisting of same number of 0's followed by the same number of 1's."

Properties of Language Classes

- ☐ A language class is a set of languages such as the regular languages.
- ☐ Language classes have two important kinds of properties:
 - 1. Closure properties.
 - 2. Decision properties.

Computation theory (1)

Closure Properties of Regular Language:

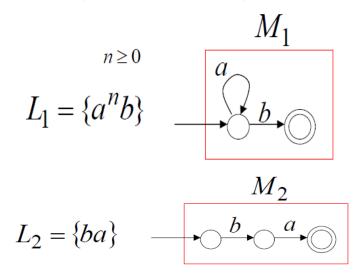
□ A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.

 \Box Example: the regular languages are obviously closed under union, concatenation, and (Kleene) closure.

☐ We say: Regular languages are **closed under** these properties.

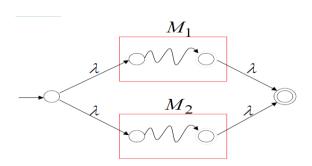
Regular language L1(M1)=L1

Example: suppose M1 recognize L1 and M2 recognize L2:



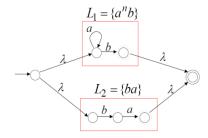
Union

NFA for L1U L2



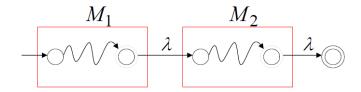
Example:

NFA with L1 \cup L2={ a^nb } \cup {ba}



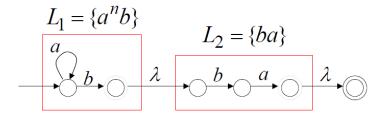
Concatenation

NFA for *L*1*L*2



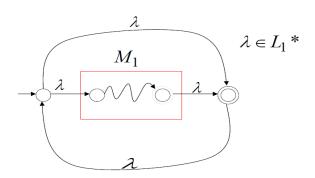
Example

NFA for L1L2= $\{a^nb\}\{ba\}=\{a^nbba\}$



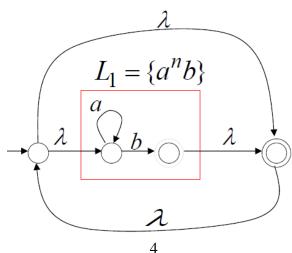
Star Operation

NFA for L1*

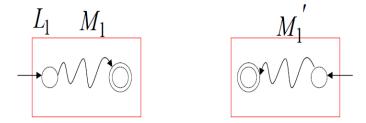


Example

NFA for L1*= $\{a^nb\}$ *

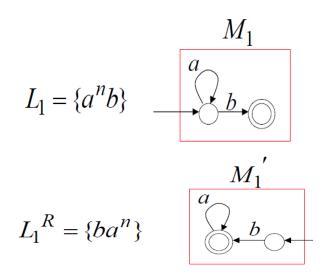


Reverse: NFA L1^R

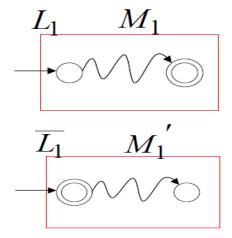


- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

Example



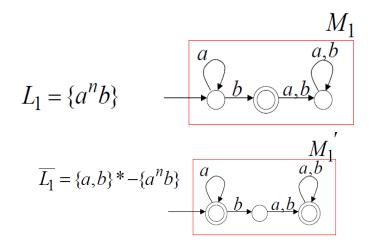
Complement



- 1. Take the FA that accepts L1
- 2. Make final states non-final, and vice-versa

Computation theory (1)

Example



Intersection

NFA for L1∩ L2

Example

$$L_1 = \{a^nb\} \quad \text{regular}$$

$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\} \quad \text{regular}$$

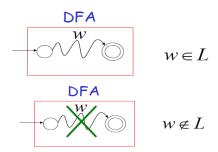
Decision properties for regular sets (membership, emptiness, finiteness):

A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.

□Example: Is language L empty?

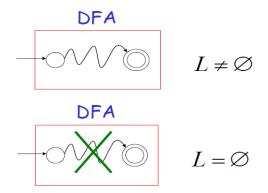
1- Membership:

Question: given regular language L and string w how can we check if $w \in L$? Answer: take the DFA that accept L and check if w is accepted.



2- emptiness:

Question: given regular language L how can we check if L is empty: $L=\Phi$? Answer: take the DFA that accept L and check if there is any path from the initial state to a final state.



3- finiteness:

Question: given regular language L how can we check if L is finite?

Answer: take the DFA that accept L and check if there is a walk without cycle from the initial state to a final state.

