Lecture four

Topics that must be covered in this lecture:

- Deterministic finite state automata DFSA
- Nondeterministic finite state automata NDFSA
- Comparison between DFA and NDFA
- The equivalence of DFAS and NDFSA

Deterministic finite state automata DFSA: it is an acceptor for any state and input character has at most one transition state that the acceptor changes to. If no transition state is specified the input string is rejected.

A DFSA is a 5-tuple (Q, Σ , δ , q0, F), where:

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function where given state and an input alphabet delivers the next state to be visited.
- 4. $q0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states (final state).
- accept string when $\delta(q0, w) = p, p \in F$

The language accepted by M, designated L(M), language of automata:

 $L(M): \{w | \delta(q0, w) = p, p \in F\}$

Example1: consider the DFSA, M=({A,B, C, D, E}, {a,b}, δ , A, {D,E}) where δ (A, a) = B, δ (A, b) = C, δ (B, a) = D, δ (B, b) = B, δ (C, a) = D, δ (C, b) = C, δ (D, b) = E, δ (E, a) = E. Draw state digraph for this example.

Example2: consider the DFSA, M=({q0,q1, q2, q3}, {0,1}, δ , q0, {q0}) where δ (q0,0) = q2, δ (q0,1) = q1, δ (q1,0) = q3, δ (q1,1) = q0, δ (q2,0) = q0, δ (q2,1) = q3, δ (q3,0) = q1, δ (q3,1) = q2.

Draw state digraph and transition table for this example, and then check input string 110101 accepted by M?

1-

2- Transition table:

Σ Q	0	1	
q0	q2	q1	
q1	q3	q0	
q2	q0	q3	
q3	q1	q2	

3-Suppose input string 110101 entered to M, check string is accepted? Start machine in state q1:

Nondeterministic finite state automata NDFSA:

NDFSA it is FA that allow one or more transition from a state on the same input symbol. NDFSA is a 5-tuple M=(Q, Σ , δ , q0, F) where Q, Σ , q0, F are the same as in DFSA and δ can be defined as total transition function $\delta: Q \times \Sigma \to 2^Q$ (2^Q : is the power set of Q, the set of all subset of Q).

- Transition function $\delta(\{q0,q1\},a) = \delta(q0,a) \cup \delta(q1,a)$

Example1: consider the FSA:

 $M=(\{A,B,S,D\},\{a,b\},\delta,S,\{D\})$ where δ is given by:

$$\delta(S, a) = \{A\}, \delta(S, b) = \{B\}, \delta(A, a) = \{A, D\}, \delta(A, b) = \emptyset,$$

$$\delta(B, a) = \emptyset, \delta(B, b) = \{B, D\}, \delta(D, a) = \emptyset, \delta(D, b) = \emptyset$$

draw state diagram and transition table.

Note: an input string is accepted by NDFSA if there exist a sequence of transition for the given string that leads from initial state to some final states.

$$\{ \mathbf{w} {\in} \, \varSigma^* | \, \delta(\mathbf{Q}, \mathbf{w}) {\cap} F \neq \emptyset \}.$$

Example2: consider the NDFSA, $M=(\{q0,q1,q2,q3,q4\}, \{a,b\}, \delta, q0, \{q2,q4\})$ suppose you have the state digraph mentioned below, find transition table for this example, and check is the input **abaab** accepted or not ?

Transition table:

Σ	a	b
q0	{q0,q3}	{q0,q1}
q1	Ø	{q2}
q2	{q2}	{q2}
q3	{q4}	Ø
q4	{q4}	{q4}

$$\begin{split} &\delta(q0,abaab) = \delta(\delta(q0,a),baab) = \delta(\{q0,q3\},baab) = \\ &= \delta\big(\delta(q0,b) \cup \delta(q3,b),aab)\big) = \delta(\{q0,q1\} \cup \emptyset,aab) \\ &= \delta(\{q0,q1\},aab) = \delta(\delta(q0,a) \cup \delta\big((q1,a),ab\big) = \delta(\{q0,q3\} \cup \emptyset,ab) \\ &\delta(\{q0,q3\},ab) = \delta(\delta(q0,a) \cup \delta(q3,a),b) = \delta(\{q0,q3\} \cup \{q4\},b) = \\ &\delta(\{q0,q3,q4\},b) = \delta\big(\delta(q0,b) \cup \delta(q3,b) \cup \delta(q4,b)\big) = \{q0,q1,q4\} \\ &\{q0,q1,q4\} \cap \{q2,q4\} = \{q4\} \in F \end{split}$$

The input string abaab accepted

Comparison between Deterministic finite state automata and Nondeterministic finite state automata

Deterministic Finite Automata DFA

DFA: different input from state to different states

DFA: This DFA has not an arrow with the label ϵ .

Non Deterministic Finite Automata NFA

NFA: one input from state to different states

NFA: This NFA has an arrow with the labele.

The Equivalence of DFSA and NDFSA:

For every NDFSA can constructed an equivalent DFSA (one which accepts the same language).

Language L can be accepted by a DFSA if L can be accepted by NDFSA.

To convert NFA to DFA we can carry out the following algorithm:

- 1- begin with $\{q0\}$, start state, and calculate δ ($\{q0\}$,a) for all a in Σ this gives a number of new states Q^- .
- 2- For each new states Q^{-} , we again calculate δ (Q^{-} ,a) for all a in Σ and introduce new states if necessary.
- 3- Repeat step2 until there are no new states.
- 4- Final states of new DFA are the states that contain any final state of the previous NFA.

Example1: let $M = (\{q0,q1\},\{a,b\}, \delta, q0,\{q1\})$ be an NFSA where :

$$\delta(q0, a) = \{q0, q1\}, \delta(q1, a) = \emptyset, \delta(q0, b) = \{q1\},$$

 $\delta(q1, b) = \{q0, q1\}$

draw state diagram for this NFA, then convert this NFA to DFA.

Solution:

NFA- state diagram:

NFA- transition table:

Σ Q	a	b
q0	{q0,q1}	{q1}
q1	Ø	{q0,q1}

DFA- transition table:

Σ	a	b
→ q0	{q0,q1}	{q1}
+q1	C	{q0,q1}
+q0q1	q0q1	q0q1
C	С	С

DFA state diagram:

