Computation theory (1) Lecture 10

Lecture ten
Topics that must be covered in this lecture:
- Derivation.
- Context Free Grammar.
- Context Free Language.
- Derivation trees.
- The ambiguous context free grammars.

Derivation

The set of all strings that can be derived from a grammar is said to be the
LANGUAGE generated from that grammar.
Examplesl: consider the grammar G1=({S,A},{a,b},S {S—»AB, A-a, B-b}), find
language generated from G1.
Solution:
S — AB

— aB

— ab
L(G1)={ab}

Examples 2: consider the grammar G2=({S,A},{a,b},S {S—-AB, A—aA|a,
B-bB|b}), find language generated from G2.

Solution:

S —AB S — AB S — AB S — AB
— aB — aAbB — aAb — abB
— ab — aabB — aab — abb

— aabb

L(G2)={a™" | m>0andn >0}

Computation theory (1) Lecture 10

CONTEXT FREE GRAMMAR
A context free grammar, called CFG, is defined by 4 tuples as G=(V, 2, S, P) where:
1. V=set of variables or Non-Terminal symbols

N

2= Set of Terminal symbols
3. S =start symbol
4. P = production rule

CFG has production rule of the form:
A—a
Where: « ={V U X}, Ae V and |A|=1
Context Free Language

Definition: The language generated by the CFG is the set of all strings of terminals
that can be produced from the start symbol S using the production as substitutions.
A language generated by the CFG is called a context free language (CFL).
The set of all CFL is identical to the set of languages accepted by Pushdown automata.
Example for generating a language: that generates equal number of a's and b's in the
form a"b", the context free grammar will be defined as:
G=({S,A},{a,b}, {S—aAb, A—aAblc})
Sol:
S—aAb

—aaAbb

—aaaAbbb

—aaabbb

—a’ph® = am"

Example about CFG

Examplel
Let the only terminal be a.
Let the only nonterminal be S.
Let the production be:
S —aS
S— 2
The language generated by this CFG is exactly a*. In this language we can have the
following derivation: S — aS — aaS — aaaS — aaaaS — aaaaaS — aaaaa A = aaaaa

Computation theory (1) Lecture 10

Example2

Let the only terminal be a.

Let the only nonterminal be S.

Let the production be:

S — SS

S—a

S— 21

The language generated by this CFG is also just the language a*.
In this language we can have the following derivation:

S — SS — SSS — SaS — SaSS — 2aSS — 1aaS — 1aal=aa

Example3

Let the terminals be a, b. And the only nonterminal be S.
Let the production be:

S —aS

S — bS

S—a

S—b

The language generated by this CFG is (a+b)*.

In this language we can have the following derivation:

S — bS — baS — baaS — baab

Exampled

Let the terminals be a, b. And the only nonterminal be S.
Let the production be:

S —aS

S —bS

S— A

The language generated by this CFG is (a+b)*.

In this language we can have the following derivation:

S — bS — baS — baaS — baa 1 =baa

Computation theory (1) Lecture 10

Derivation Tree
Derivation Tree or Parse tree is an ordered rooted tree that graphically represents the
semantic information of strings derived from a context free grammar.
Example: For the grammar G=(V,T,S,P) where S—0B, A — 1AA|e, B—>0AA, find
derivation tree for string 0011 .

Note:
- Root vertex must be labeled by the start symbol.
- Vertex labeled by non-terminal symbols.
- Leaves labeled by terminal symbol or €.
- Types of derivation tree there are two types of derivation tree:

Left derivation tree Right derivation tree

Is obtained by applying Is obtained by applying
production to the leftmost production to the rightmost
variable in each step. variable in each step.

Computation theory (1)

Lecture 10

Example:
Derivation Order

1. S— 4B 2. A= aaAd 4. B— Bb
3.A-> 4 5. B> 4

Leftmost derivation:

1 2 3 4 5
S= AB= aaAB= aaB = aaBb=aab

Rightmost derivation:
1 4 5 2 3
S= AB= ABb= Ab=aaAb= aab

Example for generationg the string aabaa from the grammar S—aAS|aSS| €,
A—SbA|ba, find left derivation tree and right derivation tree for derive aabaa.

Left derivation tree :

Computation theory (1) Lecture 10

Right derivation tree:

Computation theory (1)

Lecture 10

Ambiguity:

A context-free grammar (is ambiguous
if some string we L(G) has:
two or more leftmost derivations

(or rightmost)
Examplel:

The grammar FF —>FE+F | ExE | (E) | a
is ambiguous:

string a +a*a has two leftmost derivations

F==F+F—=a+FK—=a+F*=FE
=a+a*F=a+a*a

F=F+F=F+F+«F=a+F+F
=a+a*FE=a+a*a

2+2%2=06 2+2%2=8

6 8
(r N

) (B El\ //‘Bi%) El\
; @\% HRCRS

2 ® @
@ @ @ @

Correct result: 2+2*%2 =6

a1

2 / l 4
E) (v (E)
Ve J' ~ 2. 1\52
2 EY = (&ED

[N et

AN
N
S/

