1)
TIKRIT UNIVERSITY

COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS
DEPARTMENT OF COMPUTER SCIENCE

SUBJECT OF COMPILER1
DATE OF ISSUE: 2024 - 2025
CLASS: 3TH STAGE
SEMESTER 1
LECTURE NO. : 4

PREPARED BY

Lecturer: & Assistant Lecturer:
Mohanad Dawood Al-Roomi Luay Ibrahim Klalif

Writing a grammar (2)
1. * zero or more instances.

L* Is the set of all strings of letters, including ¢ the empty string.

L (L U D)* is the set of all strings of letters and digits beginning with
a letter.

2.+ One or more instances.
r*=r*|gandr-=rr =r'r
+ and * operators has the same precedence and associativity.
D+ 1s the set of all strings of one or more digits.

3. ? Zero or one instance.
r? 1s equivalent to r | ezero or one occurrence
L(r?)=L(r) U {c}
? operator has the same precedence and associativity.

4. L4 1s the set of all 4-letter strings.

Extensions of Regqular Expressions?

3)

N beginning of a line ~abc
$ end of a line abc$
[s] any one of the characters in string s [abc]
[s] any one character not in string s [abc]
r* Zero or more strings matching r a*
rt one or more strings matching r a+
r? Zerooroner a?
r{m,n} |between m and n occurrences of r a{l, 5}
rr, an r, followed by an r, ab
ry|r, anr,oranr, alb
(1) sameasr (a|b)
ry/r, r, when followed by r, abc /123
[A-Z] Known sequence Al...|Z
[0-9] 011/2]3]|4|5|6]7]|8](9 0]...]9

/EI Regular EXpPressions: addadil! suibisd! (4)\

are commonly used to describe patterns, The regular expressions are built recursively out of smaller
regular expressions. They are built from single characters, using union , concatenation, and the Kleene

\ closure and positive closure.)
/EI Precedence rules of Regular EXpressions ; dodiiil! bl dubves| o /g \
regular expression r ; language L(r) ; recursively subexpressions r’s ; alphabet X
a. The unary operator * has highest precedence and is left associative. Vsl oy im0 sal ¢ 58 5l
b. Concatenation has second highest precedence and is left associative. Ll Jagy sl
c. | has lowest precedence and is left associative. s OS5 5l dadle

Ex: (a)|((b)*(c)) by alb*c=alc=albc=albbc=albbbc-=...
Both expressions denote the set of strings that are either a single a or are zero or more b's followed by one c./

o
ﬁxample: Let X ={a,b}. \

1. The regular expression a | b denotes the language {a , b}.

2. (alb)(alb) denotes {aa; ab; ba; bb}, the language of all strings of length two over the alphabet X. Another
regular expression for the same language is aalabl|balbb.

3. a* denotes the language consisting of all strings of zero or more a's, that Is, {e, a, aa, aaa, ...}.

| 4. (alb)* denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and
b's: { &, a, b, aa, ab, ba, bb, aaa, ...}. Another regular expression for the same language is (a*b*)*.

5. ala*b denotes the language {a, b, ab aab, aaab, ...}, that is, the string a and all strings consisting of zero or

}h\ more a's and ending in b. /

O Algebraic laws of Regular Expressions :

kil | il (gual o) o o

ookl | 9|

Figure shows some of the algebraic laws that hold for arbitrary regular expressions r, s, and t.

()

(1) |ris=s|r | Is commutative u.lal.u

(2) |r|(s|t) = (r|s)|t = r|s|t | is associative (oo | el

(3) |r(st) =(rs)t=rst Concatenation is associative (oo | yui 9& el bl |

(4) |r(s|t) = rs|rt ; (s|t)r = sr|tr |Concatenation distributes over | sl & 30u Rl b

(5) |re=¢€er=r € is the identity for concatenation Selbieidd @ EMpty

(6) |r*=(rle)*=¢]|r|rr|.. |eisguaranteed in a closure

(7) |r**=r* * is idempotent .Awdl; Alids g 4y pa die dagdll A 180 ol A0 gaa (0 paie o Ju

J Regular Definitions
Is the patterns that describe the tokens of a Complex collections of programming language and is

a sequence of statements that each define one variable to stand for some regular expression.
Example: C identifiers are strings of letters, digits, and underscores.

Letter — A|B]...
Digit
H Identifier — Letter_(letter_ | digit)*

— 0]1]..

19

[Z]a]b]...[z]_

d,

AR

Context-Free Grammar (Definition of Grammars) (6)

a context-free grammar (has four components) consists of :

1. Terminals are the basic symbols from which strings are formed. Ex: the terminals are the keywords if
and else and the symbols "'("* and "")"". A set of terminal symbols, sometimes referred to as ''tokens''. The
terminals are the elementary symbols of the language defined by the grammar.

2. Nonterminals are syntactic variables that denote sets of strings. They help define the language
generated by the grammar. Nonterminals impose a hierarchical structure on the language that is key to
syntax analysis and translation. Ex: stmt and expr are nonterminals. A set of nonterminals, sometimes
called "'syntactic variables'. Each nonterminal represents a set of strings of terminals, in a manner we
shall describe.

3. Ina grammar, one nonterminal is distinguished as the start symbol, and the set of strings it denotes Is
the language generated by the grammar. A designation of one of the nonterminals as the start symbol.

4. The productions of a grammar specify the manner in which the terminals and nonterminals can be
combined to form strings. A set of productions, where each production consists of a nonterminal, called
the head or left side of the production, an arrow, and a sequence of terminals and/or nonterminals,
called the body or right side of the production. The intuitive intent of a production is to specify one of
the written forms of a construct; If the head nonterminal represents a construct, then the body
represents a written form of the construct.

J The Formal Definition of a Context-Free Grammar (7)
Each production consists of:
(@) A nonterminal called the head or left side of the production; this production
defines some of the strings denoted by the head.
(b) The symbol — Sometimes ::= has been used in place of the arrow.

(c) A body or right side consisting of zero or more terminals and non-terminals. The
components of the body describe one way in which strings of the nonterminal at
the head can be constructed.

d Notational Conventions (el o g deid| i)
1. These symbols are terminals:
(a) Lowercase letters early in the alphabet, such as a, b, c.
(b) Operator symbols such as +, *, and so on.
(c) Punctuation symbols such as parentheses (, comma, , and so on.
(d) The digits 0, 1, ..., 9.
(e) Boldface strings such as id or if, each of which represents a single terminal symbol.

Notational Conventions ((sl o ulg el it} (8)
2. These symbols are nonterminals:

(a) Uppercase letters early in the alphabet, such as A, B, C.

(b) The letter S, which, when it appears, is usually the start symbol.

(c) Lowercase, italic names such as expr or stmt.

(d) When discussing programming constructs, uppercase letters may be used to represent nonterminals for
the constructs. For example, non-terminals for expressions, terms, and factors are often represented by
E, T, and F, respectively.

3. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either
nonterminals or terminals.
4. Lowercase letters late in the alphabet, chiefly u, v, ..., z, represent (possibly empty) strings of terminals.

5. Lowercase Greek letters, a, B, y, for example, represent (possibly empty) strings of grammar symbols.
Thus, a generic production can be written as A — a , where A is the head and a the body.

6. A set of productions A — al, A— a2, ..., A— ak with a common head A (call them A-productions), may be
written A — al |a2]... Jak. Call al, a2, ..., ak the alternatives for A.

7. Unless stated otherwise, the head of the first production is the start symbol.

Regular definition of Id (Grammars)
 C, C++ identifiers are strings of letters, digits, and underscores.

)

-adaa Yoo
(! i | i
ol yatield o 01§
(Ot (el G

ook B g

| nonterminal terminal
production
v ¥ 1 \/
Identifier _ — Letter| _(Letter|Digit | ¥)**
Letter — A|B|...|Z|a|b]|...]z |
Digit —> 0]...]9

Shorthand disall 3¢, 48 o (e
letter — [A-Za-z_]

digit — [0-9]

id — letter_ (letter | digit)”

Shorthand 4suall sdgy 4585 o) (Say
L — [A-Zaz]

D — [0-9]
Id - L (L_|D)"

OR ¢l s (o) simaii | 30 3

ol | ‘g 3 *
i Gl | S 12
el) Gl
i@ O | i

TP UIRY:

Ex: Identifier is accepted
X

X1

Student

mark 3

I_Daracetamol_2020

@x
1X
Stu.dent

Mark+3
|

Ex: Identifier is rejected

I_DaracetamoI_ZOZO#

Regular definition of unsigned number (Grammars) (10)

B ul—— Digit — 0]...]9+——— | terminal i
| Dlglts — Dlg.lt.(DIgIt)* " 5 ol h'h““. s
OptionalFraction — . Digits | ¢ ¢ | @ G (] G
OptionalExponent — (E(+|-|¢) Digits) | ¢ ookinid | § oo
Number — Digits OptionalFraction OptionalExponent
%)
Shorthand 4asall sdgs 4085 o) (S
D — 0/[...]9 Ex: Cases of Ex: Cases of
DS — DD* accepted rejected
Num — DS (.DS)? (E[+-]?DS)? / w
“ s . . 93.5 45
daual) odgs 4SS ol ¢
v 77.3E-10 77.E-10
bs = D 0.0 9.5E+2E-10
Num — DS (.DS)? (E[+-]?DS)? Etc. 9572

The Formal Definition of a Context-Free Grammar (11)

production
{ \ : dlady Yo
stmt — if (expr) stmt | if (expr) stmt else stmt | € el g i | T et gt o el (§ |yt |
¢ . ¢ §3902 pumiy Jumid! (§ shuied] (0 JibJideid| S
el el i) et b 4
stmt — if (expr) stmt [else stmt/? | £

Ex4:
Ex1: Ex2: EXx3: if (x>=y)
if (x>=y)||if (x>=Yy) if (x>=vy) X=1;:
Xx=10: X =10; if(z==4) elseif (z==4)
else x=10; Xx=10;
X=5; else elseif (s<3)
X=5; X=9;
(IT) il e LR et ot o nd | | JUik ! €15 elsex =0 ;

The Formal Definition of a Context-Free Grammar (12)

Example: The grammar In defines simple arithmetic expressions. In this grammar, the
terminal symbols are id + - */ () , The nonterminal symbols are expression, term and factor,
and expression is the start symbol

expression — expression + term Ex: Cases of accepted | Ex: Cases of rejected
expression — expression - term SERY; TR,
expression — term Z _©5*g Z(—-5%6
term — term * factor 4*6/85-10 4*6/85-X 10
term — term/ factor X
term — factor 8
factor — (‘expression)
factor — Id
factor — number
L Shorthand sl oy 455 O Ofa v Operator (b il 5i el Jale)
Expression — Operand (Operator Operand)* Ex: + -.* | Etc.
Operand = Id | Num v’ operand (Jasall) 280 gl i aall)
Operator — +|-|*]|/ Ex: x,y,mark 1, 1,25, 7.4E+3, Etc.

The Formal Definition of a Context-Free Grammar (13)

Statement —» If (Expression) Statement (else Statement)?
Expression - Operand (Operator Operand)*
Operand = Id|Num
Operator = +|-|*|/
Id = Letter| (Letter|Digit|_)*
Letter — A|B|...|Z]|a|b]|...|z
Digit = 0/...]9
Digits = Digit (Digit)*
OptionalFraction = . Digits | €
OptionalExponent — (E(+]|-|¢) Digits)|¢
Num == Digits OptionalFraction OptionalExponent
Statement -—» Statement - if | Statement — Assignment | Statement — while | Statement —

do_while; | for — Statement | ... Etc

Statement — if If (Expression) Statement (else Statement)?

Statement — Assignment
Statement — while
Statement — do_while;
Statement - for

id = Expression ;

while (Expression) Statement

do Statement while (Expression);

for (Expression ; Expression ; Expression) Statement

il

