TIKRIT UNIVERSITY COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS DEPARTMENT OF COMPUTER SCIENCE

SUBJECT OF COMPILER1 DATE OF ISSUE: 2024 - 2025 CLASS: 3TH STAGE SEMESTER 1 LECTURE NO. : 4

PREPARED BY

Lecturer: Mohanad Dawood Al-Roomi

&

Assistant Lecturer: Luay Ibrahim Klalif

Writing a grammar

1. * zero or more instances.

L* is the set of all strings of letters, including ε the empty string. L (L U D)* is the set of all strings of letters and digits beginning with a letter.

2. + **One or more instances.**

 $r^* = r^+ | \epsilon and r^+ = rr^* = r^*r$

+ and * operators has the same precedence and associativity.
D⁺ is the set of all strings of one or more digits.

- 3. ? Zero or one instance.
 - **r**? is equivalent to $\mathbf{r} \mid \mathbf{\epsilon}$ zero or one occurrence
 - $\mathbf{L}(\mathbf{r}?) = \mathbf{L}(\mathbf{r}) \mathbf{U} \{ \boldsymbol{\varepsilon} \}.$
 - ? operator has the same precedence and associativity.
- 4. L⁴ is the set of all 4-letter strings.

Extensions of Regular Expressions?

	Extensions of Regular Expres	Sions : (3
Expression	Matches	Example
Λ	beginning of a line	^abc
\$	end of a line	abc\$
[s]	any one of the characters in string s	[abc]
[^s]	any one character not in string s	[^abc]
r *	zero or more strings matching r	a*
r +	one or more strings matching r	a +
r?	zero or one r	a?
r {m, n}	between m and n occurrences of r	a{1,5}
$\mathbf{r}_1 \mathbf{r}_2$	an r ₁ followed by an r ₂	ab
$ \mathbf{r}_1 \mathbf{r}_2$	an r ₁ or an r ₂	a b
(r)	same as r	(a b)
r ₁ / r ₂	r ₁ when followed by r ₂	abc / 123
[A-Z]	Known sequence	A Z
[0-9]	0 1 2 3 4 5 6 7 8 9	0 9

التعابير المنتظمة :Regular Expressions ا

are commonly used to describe patterns, The regular expressions are built recursively out of smaller regular expressions. They are built from single characters, using <u>union</u>, <u>concatenation</u>, and the <u>Kleene</u> <u>closure and positive closure</u>.

قواعد الأسبقية للتعابير المنتظمة : Precedence rules of Regular Expressions 🗆

regular expression r; language L(r); recursively subexpressions r's; alphabet Σ

- **a.** The unary operator * has highest precedence and is left associative.
- **b.** Concatenation has second highest precedence and is left associative.
- **c.** | has lowest precedence and is left associative.

المرفوع لقوه معينه يحل أو لأ التتابع يحل ثانياً علامة أو تكون الأخيرة

Ex: (a) $|((b)^*(c))|$ by $a|b^*c = a|c = a|bc = a|bbc = a|bbc = ...$

Both expressions denote the set of strings that are either **a** single **a** or are zero or more **b's** followed by one **c**.

Example: Let $\Sigma = \{a, b\}$.

- 1. The regular expression **a** | **b** denotes the language {**a**, **b**}.
- (a|b)(a|b) denotes {aa; ab; ba; bb}, the language of all strings of length two over the alphabet Σ. Another regular expression for the same language is aa|ab|ba|bb.
- 3. a* denotes the language consisting of all strings of zero or more a's, that is, {ɛ, a, aa, aaa, ...}.
- 4. (a|b)* denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and b's: { ε, a, b, aa, ab, ba, bb, aaa, ...}. Another regular expression for the same language is (a*b*)*.
- a|a*b denotes the language {a, b, ab, aab, aaab, ...}, that is, the string a and all strings consisting of zero or more a's and ending in b.

 $(\mathbf{4})$

القوانين الجبر الرياضي للتعابير المنتظمة : Algebraic laws of Regular Expressions 🗆

Figure shows some of the algebraic laws that hold for arbitrary regular expressions r, s, and t.

Sq.	LAW	DESCRIPTION
(1)	$\mathbf{r} \mathbf{s} = \mathbf{s} \mathbf{r} $	is commutative تبادلي
(2)	$\mathbf{r} (\mathbf{s} \mathbf{t}) = (\mathbf{r} \mathbf{s}) \mathbf{t} = \mathbf{r} \mathbf{s} \mathbf{t}$	ا is associative ترابطي
(3)	$\mathbf{r}(\mathbf{st}) = (\mathbf{rs})\mathbf{t} = \mathbf{rst}$	التتابع هو ترابطي Concatenation is associative
(4)	r(s t) = rs rt; $(s t)r = sr tr$	التتابع يوزع اكثر Concatenation distributes over
(5)	r e = e r = r	الع Empty المع المعنائي Empty
(6)	$\mathbf{r}^* = (\mathbf{r} \mid \boldsymbol{\epsilon})^* = \boldsymbol{\epsilon} \mid \mathbf{r} \mid \mathbf{rr} \mid \dots$	ε is guaranteed in a closure
(7)	$r^{**} = r^{*}$	تدل على عنصر من مجموعة لم يتغير في القيمة عند ضربه أو تشغيله بنفسه. is idempotent *

Regular Definitions

is the patterns that describe the tokens of a Complex collections of programming language and is a sequence of statements that each define one variable to stand for some regular expression.

Example: C identifiers are strings of letters, digits, and underscores.

Letter_	A B Z a b z _
Digit \longrightarrow	0 1 9
Identifier →	Letter_ (letter_ digit)*

Context-Free Grammar (Definition of Grammars)

a context-free grammar (has four components) consists of :

1. Terminals are the basic symbols from which strings are formed. Ex: the terminals are the keywords if and else and the symbols ''('' and '')''. A set of terminal symbols, sometimes referred to as ''tokens''. The terminals are the elementary symbols of the language defined by the grammar.

(6)

- 2. Nonterminals are syntactic variables that denote sets of strings. They help define the language generated by the grammar. Nonterminals impose a hierarchical structure on the language that is key to syntax analysis and translation. Ex: stmt and expr are nonterminals. A set of nonterminals, sometimes called "syntactic variables". Each nonterminal represents a set of strings of terminals, in a manner we shall describe.
- 3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of strings it denotes is the language generated by the grammar. A designation of one of the nonterminals as the start symbol.
- 4. The productions of a grammar specify the manner in which the terminals and nonterminals can be combined to form strings. A set of productions, where each production consists of a nonterminal, called the head or left side of the production, an arrow, and a sequence of terminals and/or nonterminals, called the body or right side of the production. The intuitive intent of a production is to specify one of the written forms of a construct; if the head nonterminal represents a construct, then the body represents a written form of the construct.

The Formal Definition of a Context-Free Grammar Each production consists of:

(a) A nonterminal called the head or left side of the production; this production defines some of the strings denoted by the head.

- (b) The symbol → Sometimes ::= has been used in place of the arrow.
- (c) A body or right side consisting of zero or more terminals and non-terminals. The components of the body describe one way in which strings of the nonterminal at the head can be constructed.

(اتفاقيات التدوين أو التشكيلي) Notational Conventions 🗆

- 1. These symbols are terminals:
- (a) Lowercase letters early in the alphabet, such as a, b, c.
- (b) Operator symbols such as +, *, and so on.
- (c) Punctuation symbols such as parentheses (, comma,, and so on.
- (d) The digits 0, 1, ..., 9.

(e) Boldface strings such as id or if, each of which represents a single terminal symbol.

(اتفاقيات التدوين أو التشكيلي) Notational Conventions

- 2. These symbols are nonterminals:
 - (a) Uppercase letters early in the alphabet, such as A, B, C.
 - (b) The letter **S**, which, when it appears, is usually the start symbol.
 - (c) Lowercase, italic names such as *expr* or *stmt*.
 - (d) When discussing programming constructs, uppercase letters may be used to represent nonterminals for the constructs. For example, non-terminals for *expressions*, *terms*, and *factors* are often represented by *E*, *T*, and *F*, respectively.

(8)

- **3.** Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either nonterminals or terminals.
- 4. Lowercase letters late in the alphabet, chiefly u, v, ..., z, represent (possibly empty) strings of terminals.
- **5. Lowercase Greek letters**, α , β , γ , for example, represent (possibly empty) strings of grammar symbols. Thus, a generic production can be written as $A \rightarrow \alpha$, where A is the head and α the body.
- 6. A set of productions A → α1, A→ α2, ..., A→ αk with a common head A (call them A-productions), may be written A → α1 |α2|... |αk. Call α1, α2, ..., αk the alternatives for A.
- 7. Unless stated otherwise, the head of the first production is the start symbol.

Regular definition of Id (Grammars)

(9)

C, C++ identifiers are strings of letters, digits, and underscores.

Regular definition of unsigned number (Grammars)

(10)

The Formal Definition of a Context-Free Grammar

(11)

The Formal Definition of a Context-Free Grammar

Example: The grammar in defines simple arithmetic expressions. In this grammar, the **terminal** symbols are id + - * / (), The **nonterminal** symbols are *expression*, *term* and *factor*, and *expression is* the **start symbol**

expression	\rightarrow	expression + term
expression	\rightarrow	expression - term
expression	\rightarrow	term
term	\rightarrow	term * factor
term	\rightarrow	term / factor
term	\rightarrow	factor
factor	\rightarrow	(expression)
factor	\rightarrow	Id
factor	\rightarrow	number

ſ				5	7	ŀ		0		r	1	j	1	2		n	d	l		ä	3		1			1	1	>	ć	6	1	6		`	1	1	1		1	1	1	5		ľ		
					-	-	-	V	÷.	•	-	÷ -	-	-	•		 4	÷.,				- •4	•	÷.,	•				•	· 🖌	× •		- 4	•				-			-		 - 44	r -		
۰.	11	С.,	1.1																																					 		-		• . 1	127	

1.1	1111	1111	1111	÷.,	1.1.1	1.11	1.1	111	12.1	11.	1.11	1.11	1.1	12.5	111	12.1	111	1.1	1.1	÷.,	1.11	1.1	. t	1.11	12.5	11.	1.1	1.1	111	1.11	1.1	11.	1.1	111	1.1	1.1	11.	1.11	111	1.1	11.	1.1	12.5	11.1	12.5	111	12.5	111	1.11	1.11	11.1	1.11	1.11	12.2	11.1	1.1
	· · ·	1212	1212		- C - C -		10.00	•	- C	14.1	- ° -	140	41.4	- 1 - 1	14.1	н ^с н	140		\sim		4 ° 4	14		÷ 1	÷ 41	141	÷ 1	- C - E	1	÷ 1	<i>.</i>	\sim		14.1	зČ.,	÷.,		4 ° 4	۰.	зČ.,	141	- C -	÷.,		.	14 C.	- 1 - 1	5 A C.	- 14	1.11	- 14	1.1	- 1	1	•1 <i>•</i>	÷.
	LA '	*7	5	14	\mathbf{n}	$\mathbf{\alpha}$	$\mathbf{\alpha}$		n	10					• •		1 I I		•	Δ.	5		•	-	0	1	5	1	•	•	• /	· ·	•	5	1	N 1	-	0	• 4	- 7	1	-		1	Δ.	5	\mathbf{n}	4 18	A 6	•	14	* 4	~	- N - 2	×	÷ .
	Π.	. X ·			-	S.	•		· .		1.1	12.2	1.11				b. 1 .		1.1				-		-		•			1.1		1.1					1 T.	~						1.1		1.1		•		÷.		4 8	10.0			
					U	1.1	ь т .,				1.1	140	- C -			~	1.1		· .	Z 1				1 × 1	.				л.	. 1	1.	۰.	7 .			. ب	. ÷					ц÷.,	1		/.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			. 0	CL.		4 🛛			10.0	
			IT	_	_	~	~ .		<u> </u>		- ·								\sim		Ť				<u> </u>				-			\sim	· • 1	-				<u> </u>				- · ·		~		—	_		· · ·			-	-	1.		
			. .																												· ·														- 4	.								· · ·		
	· · · ·	· · · ·	· · · ·																																																					
														· · ·								_ • ·	1.1																								· · ·		1.1							
•	\frown	5 S.	5 S. S. S.		1.1.1.1							1.1							r i					× • •	r																					· ·			1.1			1.1		1.1		11
		<u>م - ۱</u>	Ś				÷									•		÷.,					. 1	•		. ÷			. .																											
	1.1					n r	114		- C.	1.1		1.1	10.0	_	_		I	. 1			- C -		. Г	<u> </u>			. F	.	•	з÷.	÷		- C	1.1		÷		- C.	1.1		1.1		1.1		1.1	1 A C.		1 A C.	10.0	1.11	10.0	1.1	10.0	1.1		
														_									- I-																																	
	~	- N		_	. •	ᅳ	_ N	_								▰.				-			-			~	_	.																												
		•																																																						
														e								- · ·																									e									
	· · · ·	· · · ·	· · · ·																																																					
	÷					· · · ·								· · ·									1.1	•		• •																					· · ·		1.1							
•	7 7	5 S.	5 S. S. S.		1.1.1.1	· .						1.1							2.1			1.1			· •	~			· /																	· ·			1.1			1.1		1.1		11
	1.1		\sim	. 12/			\sim	1	•	. C.	1 . T	1.11	1.1	1.1	. 1.	•	17.1	2 A S		- C.	1.1		÷.,		. 🖌	Ν.	- C.			- L - L		. t			1.1			1.1	. 1.	1.1		1.1			12.7		1.1		2.22			12.7.2	1.1	1.11		
	1.1								Ξ.	1.1		1.1	10.0	. 🖅			6 . T		-		1 ° -			н.		• : :		- C.	1	а÷.	÷		- C	1.1		÷		- C.	1.1		1.1		1.1		1.1	1 A C.		1 A C.	10.0	1.11	10.0	1.1	10.0	1.1		
			/ .		.			, .								~																																								
	~	- P		-	-	~ ~	· •	_											•																																					

Ex: Cases of accepted	Ex: Cases of rejected
X + Y	X * + Y
Z-5*6	Z (-5*6
4 * 6 / 8.5 – 10	4 * 6 / 8.5 - X 10
X	
8	

(12)

✓ Operator (عامل رياضيات أو العملية الرياضية)
 Ex: +, -, *, /, Etc.
 ✓ operand (المعامل)
 Ex: x, y, mark_1, 1, 2.5, 7.4E+3, Etc.

The Formal Definition of a Context-Free Grammar

(13)

- Statement \rightarrow if (Expression) Statement (else Statement)?
- **Expression** \rightarrow **Operand** (**Operator Operand**)*
 - **Operand** \rightarrow **Id** | Num
 - **Operator** \rightarrow + | | * | /
 - Id_ \rightarrow Letter | _ (Letter | Digit | _)*
 - Letter \rightarrow A | B |... | Z | a | b | ... | z
 - Digit $\rightarrow 0 |...| 9$
 - Digits \rightarrow Digit (Digit)*
- **OptionalFraction** \rightarrow . Digits | ϵ
- **OptionalExponent** \rightarrow (E (+ | | ε) **Digits**) | ε
 - **Num** → **Digits OptionalFraction OptionalExponent**
 - Statement → Statement if | Statement Assignment | Statement while | Statement do_while; | for Statement | ... Etc
 - Statement if → if (Expression) Statement (else Statement)?
- Statement Assignment → id = Expression ;
 - **Statement while** \rightarrow **while** (**Expression**) **Statement**
 - Statement do_while; → do Statement while (Expression);
 - **Statement for** \rightarrow **for (Expression ; Expression ; Expression) Statement**

