
TIKRIT UNIVERSITY

COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS

DEPARTMENT OF COMPUTER SCIENCE

SUBJECT OF COMPILER1

DATE OF ISSUE: 2024 - 2025

CLASS: 3TH STAGE

SEMESTER 1

LECTURE NO. : 4

1

(1)

1. * zero or more instances.

L* is the set of all strings of letters, including ɛ the empty string.

L (L U D)* is the set of all strings of letters and digits beginning with

a letter.

2. + One or more instances.

r* = r+ | 𝛆 and r+ = rr* = r*r

+ and * operators has the same precedence and associativity.

D+ is the set of all strings of one or more digits.

3. ? Zero or one instance.

r? is equivalent to r | ɛzero or one occurrence

L(r?) = L(r) U {ɛ}.

? operator has the same precedence and associativity.

4. L4 is the set of all 4-letter strings.

Writing a grammar (2)

Extensions of Regular Expressions?

Expression Matches Example

^ beginning of a line ^abc

$ end of a line abc$

[s] any one of the characters in string s [abc]

[^s] any one character not in string s [^abc]

r* zero or more strings matching r a*

r+ one or more strings matching r a+

r? zero or one r a?

r {m , n} between m and n occurrences of r a{1 , 5}

r1 r2 an r1 followed by an r2 ab

r1 | r2 an r1 or an r2 a | b

(r) same as r (a | b)

r1 / r2 r1 when followed by r2 abc / 123

[A-Z] Known sequence A|…|Z

[0-9] 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9 0 |…|9

(3)

❑ Regular Expressions: التعابير المنتظمة
are commonly used to describe patterns, The regular expressions are built recursively out of smaller

regular expressions. They are built from single characters, using union , concatenation, and the Kleene

closure and positive closure.

❑ Precedence rules of Regular Expressions : المنتظمةللتعابيرالأسبقيةقواعد
regular expression r ; language L(r) ; recursively subexpressions r’s ; alphabet Ʃ

a. The unary operator * has highest precedence and is left associative. أولاًيحلمعينهلقوهالمرفوع

b. Concatenation has second highest precedence and is left associative. اًيحلالتتابع ثانيا

c. | has lowest precedence and is left associative. الأخيرةتكونأوةعلام

Ex: (a)|((b)*(c)) by a|b*c = a|c = a|bc = a|bbc = a|bbbc = …

Both expressions denote the set of strings that are either a single a or are zero or more b's followed by one c.

(4)

Example: Let Ʃ = {a , b}.

1. The regular expression a | b denotes the language {a , b}.

2. (a|b)(a|b) denotes {aa; ab; ba; bb}, the language of all strings of length two over the alphabet Ʃ. Another

regular expression for the same language is aa|ab|ba|bb.

3. a* denotes the language consisting of all strings of zero or more a's, that is, {ɛ, a, aa, aaa, …}.

4. (a|b)* denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and

b's: { ɛ, a, b, aa, ab, ba, bb, aaa, …}. Another regular expression for the same language is (a*b*)*.

5. a|a*b denotes the language {a, b, ab, aab, aaab, …}, that is, the string a and all strings consisting of zero or

more a's and ending in b.

Sq. LAW DESCRIPTION

(1) r|s = s|r | is commutative

ليِ
ُ
اد
َ
ب
َ
ت

(2) r|(s|t) = (r|s)|t = r|s|t | is associative ترابطي
(3) r(st) = (rs)t = rst Concatenation is associative التتابع هو ترابطي
(4) r(s|t) = rs|rt ; (s|t)r = sr|tr Concatenation distributes over | التتابع يوزع اكثر
(5) r𝛆 = 𝛆r = r 𝛆 is the identity for concatenation للتتابعهي Empty

(6) r* = (r| 𝛆)* = 𝛆 | r | rr |... 𝛆 is guaranteed in a closure

(7) r** = r* * is idempotent تدل على عنصر من مجموعة لم يتغير في القيمة عند ضربه أو تشغيله بنفسه.

❑ Algebraic laws of Regular Expressions : المنتظمةللتعابيرالرياضيالجبرالقوانين
Figure shows some of the algebraic laws that hold for arbitrary regular expressions r, s, and t.

(5)

❑ Regular Definitions

is the patterns that describe the tokens of a Complex collections of programming language and is

a sequence of statements that each define one variable to stand for some regular expression.

Example: C identifiers are strings of letters, digits, and underscores.
d1 r1

d2 r2

… …

dn rn

Letter_ A | B | … | Z | a | b | … | z | _

Digit 0 | 1 | … | 9

Identifier Letter_ (letter_ | digit)*

Context-Free Grammar (Definition of Grammars)

a context-free grammar (has four components) consists of :

1. Terminals are the basic symbols from which strings are formed. Ex: the terminals are the keywords if

and else and the symbols "(" and ")". A set of terminal symbols, sometimes referred to as "tokens". The

terminals are the elementary symbols of the language defined by the grammar.

2. Nonterminals are syntactic variables that denote sets of strings. They help define the language

generated by the grammar. Nonterminals impose a hierarchical structure on the language that is key to

syntax analysis and translation. Ex: stmt and expr are nonterminals. A set of nonterminals, sometimes

called "syntactic variables". Each nonterminal represents a set of strings of terminals, in a manner we

shall describe.

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of strings it denotes is

the language generated by the grammar. A designation of one of the nonterminals as the start symbol.

4. The productions of a grammar specify the manner in which the terminals and nonterminals can be

combined to form strings. A set of productions, where each production consists of a nonterminal, called

the head or left side of the production, an arrow, and a sequence of terminals and/or nonterminals,

called the body or right side of the production. The intuitive intent of a production is to specify one of

the written forms of a construct; if the head nonterminal represents a construct, then the body

represents a written form of the construct.

(6)

❑ The Formal Definition of a Context-Free Grammar

Each production consists of:

(a) A nonterminal called the head or left side of the production; this production

defines some of the strings denoted by the head.

(b) The symbol → Sometimes ::= has been used in place of the arrow.

(c) A body or right side consisting of zero or more terminals and non-terminals. The

components of the body describe one way in which strings of the nonterminal at

the head can be constructed.

(7)

❑ Notational Conventions (التشكيليأوالتدويناتفاقيات)

1. These symbols are terminals:

(a) Lowercase letters early in the alphabet, such as a, b, c.

(b) Operator symbols such as +, *, and so on.

(c) Punctuation symbols such as parentheses (, comma , , and so on.

(d) The digits 0, 1, … , 9.

(e) Boldface strings such as id or if, each of which represents a single terminal symbol.

Notational Conventions (التشكيليأوالتدويناتفاقيات)

2. These symbols are nonterminals:

(a) Uppercase letters early in the alphabet, such as A, B, C.

(b) The letter S, which, when it appears, is usually the start symbol.

(c) Lowercase, italic names such as expr or stmt.

(d) When discussing programming constructs, uppercase letters may be used to represent nonterminals for

the constructs. For example, non-terminals for expressions, terms, and factors are often represented by

E, T, and F, respectively.

(8)

3. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either

nonterminals or terminals.

4. Lowercase letters late in the alphabet, chiefly u, v, ... , z, represent (possibly empty) strings of terminals.

5. Lowercase Greek letters, α, β, γ, for example, represent (possibly empty) strings of grammar symbols.

Thus, a generic production can be written as A → α , where A is the head and α the body.

6. A set of productions A → α1, A→ α2, ..., A→ αk with a common head A (call them A-productions), may be

written A → α1 |α2|... |αk. Call α1, α2, ..., αk the alternatives for A.

7. Unless stated otherwise, the head of the first production is the start symbol.

Identifier _ Letter | _ (Letter | Digit | _)*

Letter A | B |… | Z | a | b | …| z

Digit 0 |…| 9

Regular definition of Id (Grammars)

Ex: Identifier is accepted

x

X1

Student

mark_3

_

Paracetamol_2020

Ex: Identifier is rejected

@x

1X

Stu.dent

Mark+3

_!

Paracetamol_2020#

Shorthand ان نكتبه بهذه الصيغة يمكن

letter_ → [A-Z a-z_]

digit → [0-9]

id → letter_ (letter_ | digit)*

Shorthand يمكن ان نكتبه بهذه الصيغة

L_ → [A-Z a-z_]

D → [0-9]

Id → L_ (L _ | D)*

رمزززل الن مزززة *
تشززززير ا مززززا
داخزززل القزززو
يمكززن ا يتكززرر
كثزززيرا او زززفر

ORأومعنىالىتشير|رمل.من المرات

nonterminal terminalStart Symbol

production

(9)

❑ C, C++ identifiers are strings of letters, digits, and underscores. :ملاحظة
المخطزززززت الينتقزززززا
وبرمجتزززل للمعزززر
سززززززو تكززززززو

.محاضرة العملي

Digit 0 |…| 9

Digits Digit (Digit)*

OptionalFraction . Digits | ɛ

OptionalExponent (E (+ | - | ɛ (Digits (| ɛ

Number Digits OptionalFraction OptionalExponent

D 0 |…| 9

DS DD*

Num DS (. DS)? (E [+-]? DS)?

Ex: Cases of

accepted

Ex: Cases of

rejected

7 7w

93.5 .45

12E+4 E+12

77.3E-10 77.E-10

0.0 9.5E+2E-10

Etc. 9.5.2

D 0 |…| 9

DS D+

Num DS (. DS)? (E [+-]? DS)?

Shorthand يمكن ان نكتبه بهذه الصيغة

Shorthand يمكن ان نكتبه بهذه الصيغة

Regular definition of unsigned number (Grammars) (10)

:ملاحظة
المخطزززت الينتقزززا
وبرمجتزززل لارقزززا
سززززو تكززززو
.محاضرة العملي

terminal

nonterminal

production

Start Symbol

The Formal Definition of a Context-Free Grammar

stmt → if)expr) stmt | if (expr) stmt else stmt | Ɛ

Start Symbol terminal nonterminal

Ex2:

if (x >= y)

x = 10 ;

else

x = 5 ;

Ex1:

if (x >= y)

x = 10 ;

production

Ex4:

if (x >= y)

x = 1 ;

else if (z == 4)

x = 10 ;

else if (s < 3)

x = 5 ;

else x = 0 ;

Ex3:

if (x >= y)

if (z == 4)

x = 10 ;

else

x = 5 ;

(11)

(if)ب المثال الثالث المترجم سو يعتبرها تابعة لأقر elseالززز

:ملاحظة
سززو يولززد ifالزز ك كتبزز بززل تعريزز الكرامززر

و 3و 2مشكلة التداخل من اليسار المثزال رقزم
:ل لك يجب ا تكتب بالصيغة التالية4

stmt → if (expr) stmt [else stmt]? | Ɛ

The Formal Definition of a Context-Free Grammar

Example: The grammar in defines simple arithmetic expressions. In this grammar, the

terminal symbols are id + - * / () , The nonterminal symbols are expression, term and factor,

and expression is the start symbol

expression → expression + term

expression → expression - term

expression → term

term → term * factor

term → term / factor

term → factor

factor → (expression)

factor → Id

factor → number

Ex: Cases of accepted Ex: Cases of rejected

X + Y X * + Y

Z – 5 * 6 Z (– 5 * 6

4 * 6 / 8.5 – 10 4 * 6 / 8.5 - X 10

X

8

Expression Operand (Operator Operand)*

Operand Id | Num

Operator + | - | * | /

✓ Operator (الرياضيةالعمليةأورياضياتعامل)

Ex: + , - , * , / , Etc.

✓ operand (المعامل)الرقمأوالمعرف)

Ex: x , y , mark_1, 1 , 2.5 , 7.4E+3 , Etc.

(12)

❑ Shorthand يمكن ان نكتبه بهذه الصيغة

The Formal Definition of a Context-Free Grammar

Statement if (Expression) Statement (else Statement)?

Expression Operand (Operator Operand)*

Operand Id | Num

Operator + | - | * | /

Id_ Letter | _ (Letter | Digit | _)*

Letter A | B |… | Z | a | b | …| z

Digit 0 |…| 9

Digits Digit (Digit)*

OptionalFraction . Digits | ɛ

OptionalExponent (E (+ | - | ɛ (Digits (| ɛ

Num Digits OptionalFraction OptionalExponent

Statement Statement – if | Statement – Assignment | Statement – while | Statement –

do_while; | for – Statement | … Etc

Statement – if if (Expression) Statement (else Statement)?

Statement – Assignment id = Expression ;

Statement – while while (Expression) Statement

Statement – do_while; do Statement while (Expression);

Statement - for for (Expression ; Expression ; Expression) Statement

(13)

