Obiject Oriented programming Lecture 11

Abstract Classes

* An abstract class cannot be instantiated, but other classes are derived from it.
* An Abstract class serves as a superclass for other classes.

» The abstract class represents the generic or abstract form of all the classes that are

derived from it.

* A class becomes abstract when you place the abstract key word in the class definition.

public abstract class ClassName

Abstract Methods

* An abstract method is a method that appears in a superclass, but expects to be ov
a subclass.

* An abstract method has no body and must be overridden in a subclass.
AccessSpecifier abstract ReturnType MethodName (Parameterl

Ex: public abstract void GetSalary ( )

* Any class that contains an abstract method is automatically abstract.
» Abstract methods are used to ensure that a subclass implements the method.

» [f a subclass fails to override an abstract method. a comniler error will result.



Obiject Oriented programming Lecture 11

Interfaces

* An interface is similar to an abstract class that has all abstract methods.
It cannot be nstantiated, and
all of the methods listed 1n an interface must be written elsewhere.

* The purpose of an interface is to specify behavior for other classes.

* It is often said that an interface is like a “contract,” and when a class implements an

interface it must adhere to the contract.

Interfaces

* A class can implement one or more interfaces

+ If a class implements an interface, it uses the implements keyword in the
class header.

» The general format of an interface definition:

public interface InterfaceName

{
(Method headers...)

public interface RetailItem

{
(Method headers...)

public class CD implements RetailItem

public class Book implements RetailItem



Obiject Oriented programming Lecture 11

Class ABC

o
RetailItepn interface
*/

public interface Retailltem

{
public double getRetailPrice();

M NN B W e



Obiject Oriented programming Lecture 11

[
Compact Disc class
*/

public class CompactDisCc implements RetailItem

{
private String title; // The CD's title

private String artist; // The CD's artist
private double retailPrice; // The CD's retail price

public double getRetailPrice()

{
return retailerice;

Enumerated Types

* Known as an enum, requires declaration and definition like a class
* Syntax:
enum typeName { one or more enum constants }
* Definition:
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY}
enum CarColor { RED, BLACK, BLUE, SILVER }

enum CarType { PORSCHE, FERRARI, JAGUAR}
- Declaration:
Day WorkDay, // creates a Day enum

- Assignment:

Day WorkDay = Day. WEDNESDAY,;



Obiject Oriented programming Lecture 11

enum Gender {Mzls,Fesmales};

enum Course {Database, Programming,Math, ERFP};
enum Semester {Summer,Winter,Fall, Spring}:
public class RegisterForm

{

String stdname;

Gender stdgender;

Course crs ;

Semester sem ;

public RegisterForm ()

{

stdname ="No Name";
stdgender = Gender.Males;
crs = Course.Math ;

sem = Semester.Spring:;

Enumerated Types - Methods

* toString - returns name of calling constant

* ordinal —returns the zero-based position of the constant in the enum. For example the ordinal for
Day.THURSDAY is 4

* equals —accepts an object as an argument and returns true if the argument is equal to the calling enum
constant

+ compareTo - accepts an object as an argument and returns a negative integer if the calling constant’s
ordinal < than the argument’s ordinal, a positive integer if the calling constant’s ordinal > than the

argument’s ordinal and zero if the calling constant’s ordinal == the argument’s ordinal.



