Obiject Oriented programming Lecture 8

Defining Classes for Objects

Object-oriented programming (OOP) involves programming using objects. An
object represents an entity in the real world that can be distinctly identified. For
example, a student, a desk, a circle, a button, and even a loan can all be viewed as
objects.

An object has a unique identity, state, and behavior.
m The state of an object (also known as its properties or attributes) is represented by
data fields with their current values.
A circle object, for example, has a data field radius, which is the property
that characterizes a circle.
A rectangle object has data fields width and height, which are the properties
that characterize a rectangle.

m The behavior of an object (also known as its actions) is defined by methods. To
invoke a method on an object is to ask the object to perform an action. For
example, you may define a method named getArea() for circle objects. A circle
object may invoke getArea() to return its area.

A Java class uses variables to define data fields and methods to define actions. Additionally, a class provides
methods of a special type, known as constructors, which are invoked to create a new object. A constructor can
perform any action, but constructors are designed to perform initializing actions, such as initializing the data fields
of objects.

class Circle {
/** The radius of this circle */
double radius = 1.0; -

/** Construct a circle object */
Circle () {
}

/** Construct a circle object */ e
Circle (double newRadius) {

radius = newRadius;
}
/** Return the area of this circle */
double getArea () { -€

return radius * radius * 3.14159;

}

Obiject Oriented programming Lecture 8

Write a Class, Step By Step

e A Rectangle object will have the following fields:

Rectangle

length
width

setLength ()
setWidth ()
getLength ()
getWidth ()
getArea ()

public class Rectangle {
private double length;
private double width;

}
Access Modifier

* An access modifier 1s a Java keyword that indicates how a field or method can
be accessed.
* public
When the public access modifier is applied to a class member, the member can be
accessed by code inside the class or outside.
* private
When the private access modifier is applied to a class member, the member cannot be

accessed by code outside the class. The member can be accessed only by methods that
are members of the same class.

data hiding

Obiject Oriented programming Lecture 8

* An object hides its internal, private fields from code that 1s outside the class
that the object 1s an instance of.

* Only the class's methods may directly access and change the object’s internal
data.

* Code outside the class must use the class's public methods to operate on an
object's private fields.

* Data hiding 1s important because classes are typically used as components in
large software systems, involving a team of programmers.

Return

Rectangle
[ype
Access MF”““ - width : double
specifier Name - length : double

+ setWidth(w : double) : void
+ setLength(len : double): void
. . + getWidth() : double
public void setLength (double len) +§eu_engtﬁ):double

+ getArea() : double

Parameter variable declaration

public class Rectangle {
private double length;
private double width;
public void setLength (double I)
{
length=l;
}
public void setWidth (double w)
{
width=w;

}

Obiject Oriented programming Lecture 8

Creating a Rectangle object

Rectangle box = new Rectangle () ;

A Rectangle object

The box
variable holds length: | 0.0
the address of address — .
the Rectangle width: | 0.0
object.

Calling setLength method

box.setLength (10.0) ;

The box A Rectangle object
variable holds
the address of address length: | 10.0
e width: | 0.0
Rectangle
object.

This 1s the state of the box object after
the setLength method executes.

Obiject Oriented programming Lecture 8

Accessors and Mutators

public class Rectangle

{

private double width;
private double length;

public void setWidth(double w)
{ width = w;

}
public void setLength(double len)
{ length = len;

}
public double getWidth()
{ return width;

}
public double getLength()
{ return length,;

}
public double getArea()
{ return length * width;

}
}

Uninitialized Local Reference Variables

+ Reference variables can be declared without being initialized.

Rectangle box;

This statement does not create a Rectangle object, so it 1s an unimtialized local
reference variable.

* A local reference variable must reference an object before it can be used, otherwise a
compiler error will occur.

box = new Rectangle():

Box (Rectfmgle
variable L object

Obiject Oriented programming Lecture 8

where <class name> is the name of the class to which this constructor belongs. The
following diagram shows the constructor of the Bicycle class:
Constructors

+ Classes can have special methods called constructors.
* A constructor 1s a method that 1s automatically called when an object is

created.
« Constructors are used to perform operations at the time an object is created.

+ Constructors typically initialize instance fields and perform other object

where <class name> is the name of the class to which this constructor belongs. The
following diagram shows the constructor of the Bicycle class:

Class Name
Modifier }—| |—{ Parameters

public Bicycle

| ownerName = "Unassigned”; —|5tater‘nent5

i

Notice that a constructor does not have a return type
and,consequently, will never include a return statement.

The modifier of a constructor does not have to be public, but non-
public constructors are rarely used.

The purpose of the constructor is to initialize the (data field) data
memberand perform any other initialization tasks.

Obiject Oriented programming Lecture 8

The Default Constructor

» When an object 1s created, its constructor is always called.

* If you do not write a constructor, Java provides one when the class 1s
compiled. The constructor that Java provides is known as the default
constructor.

It sets all of the object’s numeric fields to 0.
It sets all of the object’s boolean fields to false.
It sets all of the object’s reference variables to the special value nu/l.

Obiject Oriented programming

Lecture 8

class Emp {

private String name:
private String id;
private int salary:

Ex :Define class have two constructors and a method to
display name ,id and salary of employ

Emp(){ /! default constructor. No argument list

name = “Ahmed":
id="1234";
salary = 100;

public Emp(String n, String i. inf s) {
name = n;
id=1i:
salary = s:

void display() {
Svstem.out.println(" ' nEmployve Info "):
System.out.println{"" Name '+ name);
Svstem.out.println("ID "+ id);
System.out.println(" Salary "+ salary):
i

¥

class ExEmp {
public static void main(String [] args){
Emp el = new Emp():
el.displav():

/' non-default constructor

Emp e4 = new Emp("Ali","98745", 400):

E4.display():
P

