Object Oriented programming Lecture 3

Selection Statements (Condition)

Introduction
The program can decide which statements to execute based on a condition.

Java provides selection statements: statements that let you choose actions with alternative
Courses.

if (radius < 0) {
System.out.printin(**Incorrect input™);

¥

else {
area = radius * radius * 3.14159;
System.out.printin(*"Area is " + area);

¥

Selection statements use conditions that are Boolean expressions.

A Boolean expression is an expression that evaluates to a Boolean value: true or false.

boolean Data Type
The boolean data type declares a variable with the value either true or false.

Java provides six relational operators (also known as comparison operators) to compare two
values, shown in Table 3.1.

TABLE 3.1 Relational Operators

Java Operator ~ Mathematics Symbol ~ Name Example (radius is 5) Result
< < less than radius < 0 false
<= < less than or equal to radius <= 0 false
> > greater than radius > 0 true
>= > greater than orequalto radius >= 0 true
== = equal to radius == false
1= * not equal to radius != 0 true

if Statements

An if statement is a construct that enables a program to specify alternative paths of execution.

Object Oriented programming Lecture 3

= A one-way if statement executes an action if and only if the condition is true.
The syntax for a one-way if statement is:

it (boolean-expression) {
statement(s);

¥

| [

boolean- false false

SR (radius >= 0)
true Y

Statement(s) area = radius * radius * PI;
2 ' System.out.println("The area for the circle of" +
" radius " + radius + " is " + area);

o $

(a) (b)

™

FIGURE 3.1 An if statement executes statements if the boolean-expression evaluates to true.

if (i>0){
System.out.printin(*'i is positive");

b
= Two-Way if-else Statements

An if-else statement decides the execution path based on whether the condition is true or false.

The syntax for a two-way if-else statement:

if (boolean-expression) {
statement(s)- for-the-true-case;
}
else {
statement(s)- for-the-false-case; e bookan- _ fake

} N\ expression

Statement(s) for the true case Statement(s) for the false case |

e G

4
Ot D
A4

Object Oriented programming Lecture 3

Int number =10;
if (number % 2 == 0)
System.out.printin(number + ** is even.");
else
System.out.printin(number + ** is odd.");

= Nested if and Multi-Way if-else Statements
An if statement can be inside another if statement to form a nested if statement.

The statement in an if or if-else statement can be any legal Java statement, including another if
or if-else statement. The inner if statement is said to be nested inside the outer if statement. The
inner if statement can contain another if statement; in fact, there is no limit to the depth of the
nesting. For example, the following is a nested if statement:

if (i>k){
if j >Kk)
System.out.printin(*'i and j are greater than k);

¥

else
System.out.printin(*'i is less than or equal to k™);

example:
double score =67; T
if (score >= 90.0) Qﬂ%iﬁﬁ__“
System.out.print("A™); it S
else if (score >= 80.0) e s 4] \Eq//ﬁt::ﬂm,m
System.out.print("B");

grade is B
else if (score >= 70.0) | \:qf/f_;;1=“'m
System.out.print("C™); EETEH W
else if (score >= 60.0) R 15 0
System.out.print("D");

else

grade is F
System.out.print("F");

FIGURE 3.4 You can use a multi-way if-else statement to assign a grade.

Object Oriented programming Lecture 3

You can use nested if statements to write a program that interprets body mass index.

Body Mass Index (BMI) is a measure of health based on height and weight. It can be calculated
by taking your weight in kilograms and dividing it by the square of your height in meters.

BMI =
— ’12
BMI i
BMI = body mass index Interpretatlon
™M =mass (in kilograms) BMI < 18.5 Underweight
B ISRl 185 < BMI <25.0 Normal
25.0 < BMI <30.0 Overweight
. <
LISTING 3.4 ComputeAndInterpretBMI.java 30.0 = BMI Obese
1 import java.util.Scanner;
2
3 public class ComputeAndInterpretBMI {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter weight in pounds
8 System.out.print("Enter weight in pounds: ");
9 double weight = input.nextDouble(); input weight
10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble(); input height
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; // Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight * KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
24 double bmi = weightInKilograms / compute bmi
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.printIn("BMI is " + bmi); display output
26 if (bmi < 18.5)
27 System.out.printin("Underweight™);
28 else if (bmi < 25)
29 System.out.printIn("Normal");
30 else if (bmi < 30)
31 System.out.printin("Overweight");
32 else
33 System.out.println("Obese™);
34
35: ¥

Logical Operators
The logical operators !, &&, ||, and ”* can be used to create a compound Boolean expression.

TABLE 3.3 Boolean Operators

Operator Name Description

! not logical negation
&& and logical conjunction
| or logical disjunction
A exclusive or logical exclusion

Object Oriented programming Lecture 3

TABLE 3.4 Truth Table for Operator !

p 'p Example (assume age = 24, weight = 140)

true false ! (age > 18) is false, because (age > 18) is true.

false true ! (weight == 150) is true, because (weight == 150)
is false.

TaBLE 3.5 Truth Table for Operator &&

P1 P2 p; && p; Example (assume age = 24, weight = 140)
false false false
false true false (age > 28) && (weight <= 140) is true,
because (age > 28) is false.
true false false
true true true (age > 18) && (weight >= 140) is true,
because (age > 18) and (weight >= 140) are
both true.
TABLE 3.6 Truth Table for Operator | |
pP1 p2 p1 || p2 Example (assume age = 24, weight = 140)
false false false (age > 34) || (weight >= 150) is false, because
(age > 34) and (weight >= 150) are both false.
false true true
true false true (age > 18) || (weight < 140) is true, because
(age > 18) is true.
true true true
TABLE 3.7 Truth Table for Operator A
pP1 P2 p1 A p; Example (assume age = 24, weight = 140)

false false false (age > 34) A (weight > 140) is false, because (age > 34) and
(weight > 140) are both false

false true true (age > 34) A (weight >= 140) is true, because (age > 34)is
false but (weight >= 140) is true

true false true

true true false

Switch Statements

A switch statement executes statements based on the value of a variable or an expression.

switch (status) {
case 0: compute tax for single filers;
break;
case 1: compute tax for married jointly or qualifying widow(er);
break;
case 2: compute tax for married filing separately;
break;
case 3: compute tax for head of household;
break;
default: System.out.println("Error: invalid status');
System.exit(l);
}

Object Oriented programming Lecture 3

The flowchart of the preceding switch statement is shown in Figure 3.5.

Object Oriented programming Lecture 3

O
status is 0 :
— Compute tax for single filers I-> break '—>
status is 1 SV e -
Compute tax for married jointly or qualifying widow(er) |-> break |—>
status is 2 o
———————> Compute tax for married filing separately I-> break |—>
status is 3
= Compute tax for head of household I-> break I—»
default .
> Default actions |_>

3

FIGURE 3.5 The switch statement checks all cases and executes the statements in the matched case.

Here is the full syntax for the switch statement:

switch (switch-expression) {

case valuel: statement(s)1;
break;

case value2: statement(s)2;
break;

case valueN: statement(s)N;
break;
default: statement(s)-for-default;

¥

The switch statement observes the following rules:

m The switch-expression must yield a value of char, byte, short, int, or String type and must always
be enclosed in parentheses.

m The valuel, . . ., and valueN must have the same data type as the value of the switchexpression.

Note that valuel, . . ., and valueN are constant expressions, meaning that they cannot contain
variables, such as 1 + x.

m When the value in a case statement matches the value of the switch-expression, the statements
starting from this case are executed until either a break statement or the end of the switch
statement is reached.

m The default case, which is optional, can be used to perform actions when none of the specified
cases matches the switch-expression.

m The keyword break is optional. The break statement immediately ends the switch statement.
7

Object Oriented programming Lecture 3

Loops

Introduction

A loop can be used to tell a program to execute statements repeatedly.

The while Loop

A while loop executes statements repeatedly while the condition is true. write a loop inthe
following common form:

i = initialvValue; // Initialize loop control variable
while (i < endValue)
// Loop body

i++; // Adjust loop control variable

3

The syntax for the while loop is:

while (loop-continuation-condition) {
// Loop body
Statement(s);

¥

i count = 0;|

loop-
continuation-
condition?

ke (count < 100)? fakse

true

Statement(s) | System.out.printin("Welcome to Java!");
(loop body) count++;

(a) (b)
FIGURE 5.1 The while loop repeatedly executes the statements in the loop body when the loop-
continuation-condition evaluates to true.

loop-continuation-condition
int count = D;“/f’///f

while (count < 100) {
System.out.printIn("Welcome to Javal!'); loop body
count++;

}

Object Oriented programming Lecture 3

For example:

int sum = 0, i =

while (i < 10) {
sum = sum + 1;
i+t

1;

}

System.out.printin("sum is " + sum); // sum is 45

Write class (program) to find the great common divisor (,S¥) & _idal) awldll alay)

LISTING 5.9 GreatestCommonDivisor.java

1

N

import java.util.Scanner;

public class GreatestCommonDivisor {

/*% Main method */

public static void main(String[] args) {
// Create a Scanner
Scanner input = new Scanner(System.in);

// Prompt the user to enter two integers
System.out.print("Enter first integer: ");
int nl = input.nextInt();
System.out.print("Enter second integer: '");
int n2 = input.nextInt();

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd
while (k <= n1 & k <= n2) {
if (n1 %k ==08& n2 % k = 0)
gcd = k; // Update gcd
k++;
}

"

System.out.printin("The greatest common divisor for " + nl +

"and " + n2 + " is " + gcd);

The do-while Loop

A do-while loop is the same as a while loop except that it executes the loop body first and then

checks the loop continuation condition.

FIGURE 5.2 The do-while loop executes the loop body first, then checks the loopcontinuation- condition

—

do { S
// Loop body; l
Statement(s);

} while (Toop-continuation-condition); -

condition?

9

Object Oriented programming Lecture 3

to determine whether to continue or terminate the loop.

10

Object Oriented programming Lecture 3

The for Loop

A for loop has a concise syntax for writing loops.

A for loop can be used to simplify the preceding loop as:

for (1 = initialValue; 1 < endValue; i++)
// Loop body

In general, the syntax of a for loop is:

for (initial-action; loop-continuation-condition; action-after-each-iteration) {
// Loop body;
Statement(s);

}

initial-action | q

I
(=]

loop-) ,
continuation- false G < 100)? false
condition?
true
Statement(s) System.out.println(
(loop body) "Welcome to Java");
— action-after-each-iteration | —_— -i++|

§ S

(a) (b)
FIGURE 5.3 A for loop performs an initial action once, then repeatedly executes the statements in the
loop body, and performs an action after an iteration when the loop-continuation-condition evaluates to
true.

for (int 1 = 0; i < 100; i++) {
System.out.printin("Welcome to Java!");

}

10

Object Oriented programming

Lecture 3

= Common Errors

= Infinite loops

/

Error

Empty body

for (Aint i = 0; i < 10; i++);

{
}

System.out.printIn("i is "

+ 1);

for (int i = 0; i < 10; i++) {3;
{
System.out.printin("i is "

3

+ i),

for (; ;) {

}

// Do something

Equivalent

}

(a)

for (; true;) {
// Do something

Equivalent

r}

(b)

11

while (true) {
// Do something

This is better

©

Object Oriented programming Lecture 3

Q1:Write class (program) ask user to enter two numbers and mathematic operation
reactively. Based on entered operation the program perform either summation, subtraction,
multiplication, division.

import java.util.Scanner;

public class SimpleCalculater {

public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.printin("plz Enter number1");

double numberl=in.nextDouble(); = : —
System.out.printin("plz Enter numbA‘V| ke 2 be)
double number2=in.nextDouble();

System.out.printin("Choose Operation +, -, *, /, % ");

char ch =in.next().charAt(0); ey 3el B
if(ch =="+') ¢ o -
System.out.printin(numberl + number2); + SRS Sl e

else if(ch =="-')

System.out.printin(numberl - number2);

else if(ch =="/")

System.out.printin(numberl / number2);
else if(ch =="*)
System.out.printin(numberl * number2);
else if(ch =="'%")
System.out.printin(numberl % number2);

}

12

