

Object Oriented programming Lecture 2

1

Simple Java Program

A Java program is executed from the main method in the class.

Let’s begin with a simple Java program that displays the message Welcome to Java! on the

console. (The word console is an old computer term that refers to the text entry and display

device of a computer. Console input means to receive input from the keyboard, and console

output means to display output on the monitor.) The program is shown in Listing 1.1.

LISTING 1.1 Welcome.java

1 public class Welcome {

2 public static void main(String[] args) {

3 // Display message Welcome to Java! on the console

4 System.out.println("Welcome to Java!");

5 }

6 }

 Every Java program must have at least one class. Each class has a name. By convention,

class names start with an uppercase letter.

 The program is executed from the main method. A class may contain several methods.

The main method is the entry point where the program begins execution.

 Every statement in Java ends with a semicolon (;), known as the statement terminator.

 Comments help programmers to communicate and understand the program. They are

not programming statements and thus are ignored by the compiler. In Java, comments

are preceded by two:

- slashes (//) on a line, called a line comment,

- enclosed between /* and */ on one or several lines, called a block comment or paragraph

comment.

// This application program displays Welcome to Java!

/* This application program

displays Welcome to Java! */

Object Oriented programming Lecture 2

2

1. A pair of curly braces ({ })in a program forms a block that groups the program’s

components. In Java, each block begins with an opening brace ({) and ends with a

closing brace (}). Every class has a class block that groups the data and methods of the

class. Similarly, every method has a method block that groups the statements in the

method. Blocks can be nested, meaning that one block can be placed within another, as

shown in the following code.

Creating, Compiling, and Executing a Java Program

You save a Java program in a .java file and compile it into a .class file.

The Java Virtual Machine executes the class file.

As shown in Figure bellow.

FIGURE 1.6 The Java program-development process consists of repeatedly creating/modifying source

code, compiling, and executing programs

FIGURE 1.8 (a) Java source code is translated into bytecode. (b) Java bytecode can be executed on any

computer with a Java Virtual Machine.

Java is both compiled and interpreted.

Object Oriented programming Lecture 2

3

Instead of translating programs into machine language, the Java compiler generates byte code.

Byte code is easy (and fast) to interpret, like machine language, but it is also portable, like a

high-level language. Thus, it is possible to compile a program on one machine, transfer the byte

code to another machine, and then interpret the byte code on the other machine. This ability is

an advantage of Java over many other high-level languages.

Programming Errors

Programming errors can be categorized into three types: syntax errors, runtime errors, and

logic errors.

1. Syntax Errors

Syntax Errors: Errors that are detected by the compiler are called syntax errors or

compile errors. Syntax errors result from errors in code construction, such as mistyping a

keyword, or using an opening brace without a corresponding closing brace.

For example,

LISTING 1.4 ShowSyntaxErrors.java

1 public class ShowSyntaxErrors {

2 public static main(String[] args) {

3 System.out.println("Welcome to Java);

4 }

5 }

Four errors are reported, but the program actually has two errors:

■ The keyword void is missing before main in line 2.

■ The string Welcome to Java should be closed with a closing quotation mark in line 3.

Object Oriented programming Lecture 2

4

2. Runtime Errors

Runtime errors are errors that cause a program to terminate abnormally. They occur while a

program is running if the environment detects an operation that is impossible to carry out.

For example

 if the program expects to read in a number, but instead the user enters a string, this causes data-type

errors to occur in the program.

 Another example of runtime errors is division by zero.

LISTING 1.5 ShowRuntimeErrors.java

1 public class ShowRuntimeErrors {

2 public static void main(String[] args) {

3 System.out.println(1 / 0);

4 }

5 }

FIGURE 1.11 The runtime error causes the program to terminate abnormally.

3. Logic Errors

Logic errors occur when a program does not perform the way it was intended to. Errors of this

kind occur for many different reasons. For example, suppose you wrote the program in Listing

1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

LISTING 1.6 ShowLogicErrors.java

1 public class ShowLogicErrors {

2 public static void main(String[] args) {

3 System.out.println("Celsius 35 is Fahrenheit degree ");

4 System.out.println((9 / 5) * 35 + 32);

5 }

6 }

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0

To get the correct result, you need to use 9.0 / 5

Common Errors

 Common Error 1: Missing Braces

Object Oriented programming Lecture 2

5

 Common Error 2: Missing Semicolons

 Common Error 3: Missing Quotation Marks

 Common Error 4: Misspelling Names

Display output in the Console

Java uses System.out to refer to the standard output device. By default, the output device is the

display monitor.

To perform console output, you simply use the print () or println() methods to display a

primitive value or a string to the console. For example:

System.out.print("Enter a number for radius: ");

System.out.print("Enter your Name: ");

System.out.println(4+ 1);

int sum, num1, num2;

sum = num1 + num2;

System.out.println("the sum of num1 and num2 is: " + Sum);

Reading Input from the Console

Reading input from the console enables the program to accept input from the user.

Java uses System.in to the standard input device. By default, the input device is the keyboard. .

Console input can use the Scanner class to create an object to read input from System.in, as

follows:

Object Oriented programming Lecture 2

6

Scanner input = new Scanner (System.in); creates a Scanner object and assigns

its reference to the variable input

double radius = input.nextDouble(); reads a number from the keyboard

and assigns the number to radius

LISTING 2.2 ComputeAreaWithConsoleInput.java

1 import java.util.Scanner;

2 //import class

3 public class ComputeAreaWithConsoleInput {

4 public static void main(String[] args) {

5 // Create a Scanner object

6 Scanner input = new Scanner(System.in);

7 //create a Scanner

8 // Prompt the user to enter a radius

9 System.out.print("Enter a number for radius: ");

10 double radius = input.nextDouble();

11 //read a double value from user

12 // Compute area

13 double area = radius * radius * 3.14159;

14// Display results

15 System.out.println("The area for the circle of radius " + radius + " is " + area);

16 }

17 }

The area for the circle of radius 100 is 5

Note: The Scanner class is in the java.util package.

The following statement imports from the package.

import java.util.Scanner;

import java.util.*;

Object Oriented programming Lecture 2

7

LISTING 2.3 ComputeAverage.java

1 import java.util.Scanner;

2 // Scanner is in the java.util package

3 public class ComputeAverage {

4 public static void main(String[] args) {

5 // Create a Scanner object

6 Scanner input = new Scanner(System.in);

7// Prompt the user to enter three numbers

8 System.out.print("Enter three numbers: ");

9 double number1 = input.nextDouble();

10 double number2 = input.nextDouble();

11 double number3 = input.nextDouble();

12 //Compute average

13 double average = (number1 + number2 + number3) / 3;

14 // Display results

15 System.out.println("The average of " + number1 + " " + number2

 + " " + number3 + " is " + average);

16 }

17 }

Variables

Variables are used to store values to be used later in a program.

They are called variables because their values can be changed. (The value of a variable may

change during the execution of a program)

The variable declaration tells the compiler to allocate appropriate memory space for the variable

based on its data type.

The syntax for declaring a variable is

datatype variableName;
Here are some examples of variable declarations:

Object Oriented programming Lecture 2

8

int count ; // Declare count to be an integer variable

float radius; // Declare radius to be a double variable

double interestRate; // Declare interestRate to be a double variable

Variables often have initial values. You can declare a variable and initialize it in one step.

Consider, for instance, the following code:

int count = 1;

This is equivalent to the next two statements:

int count;

count = 1;

You can also use a shorthand form to declare and initialize variables of the same type together.

For example,

int i = 1, j = 2, x= 5;

Assignment operator

The syntax for assignment statements is as follows:

Variable = expression;
For example, consider the following code:

int y = 1; // Assign 1 to variable y

double radius = 1.0; // Assign 1.0 to variable radius

int x = 5 * (3 / 2); // Assign the value of the expression to x

x = y + 1; // Assign the addition of y and 1 to x

double area = radius * radius * 3.14159; // Compute area

for multiple variables assigned, you can use this syntax:

i = j = k = 1;

which is equivalent to

k = 1;

j = k;

i = j;

Named Constants

A named constant is an identifier that represents a permanent value.

Constant is a variable data that never changes during the execution of a program

Object Oriented programming Lecture 2

9

The syntax for declaring a constant:

final datatype CONSTANTNAME = value;
The word final is a Java keyword for declaring a constant.

For example,

final double PI = 3.14159; // Declare a constant

error: PI = PI +5;

Numeric Data Types and Operations

Java has six numeric types for integers and floating-point numbers with operators

{ + , - , * , / , and %}.

Reading Numbers from the Keyboard

You know how to use the nextDouble() method in the Scanner class to read a double value from

the keyboard.

Object Oriented programming Lecture 2

10

Here are examples for reading values of various types from the keyboard:

1 Scanner input = new Scanner(System.in);

2 System.out.print("Enter a byte value: ");

3 byte byteValue = input.nextByte();

4

5 System.out.print("Enter a short value: ");

6 short shortValue = input.nextShort();

7

8 System.out.print("Enter an int value: ");

9 int intValue = input.nextInt();

10

11 System.out.print("Enter a long value: ");

12 long longValue = input.nextLong();

13

14 System.out.print("Enter a float value: ");

15 float floatValue = input.nextFloat();

Numeric Operators

The operators for numeric data types include the standard arithmetic operators: addition (+),

subtraction (–), multiplication (*), division (/), and remainder (%), as shown in Table 2.3. The

operands are the values operated by an operator.

Exponent Operations

The Math.pow(a, b) method can be used to compute ab. The pow method is defined in the Math

class in the Java API.

Object Oriented programming Lecture 2

11

For example,

System.out.println(Math.pow(2, 3)); // Displays 8.0

System.out.println(Math.pow(4, 0.5)); // Displays 2.0

System.out.println(Math.pow(2.5, 2)); // Displays 6.25

System.out.println(Math.pow(2.5, -2)); // Displays 0.16

Listing 2.6 gives a program that converts a Fahrenheit degree to Celsius using the formula

celsius = (59) (fahrenheit - 32).

LISTING 2.6 FahrenheitToCelsius.java

1 import java.util.Scanner;

2

3 public class FahrenheitToCelsius {

4 public static void main(String[] args) {

5 Scanner input = new Scanner(System.in);

6

7 System.out.print("Enter a degree in Fahrenheit: ");

8 double fahrenheit = input.nextDouble();

9

10 // Convert Fahrenheit to Celsius

11 double celsius = (5.0 / 9) * (fahrenheit - 32);

12 System.out.println("Fahrenheit " + fahrenheit + " is " +celsius + " in Celsius");

13 }

14 }

Augmented Assignment Operators

The operators +, -, *, /, and % can be combined with the assignment operator to form

augmented operators.

Object Oriented programming Lecture 2

12

Increment and Decrement Operators

The increment operator (++) and decrement operator (– –) are for incrementing and

decrementing a variable by 1.

 postincrement

int i = 3, j = 3;

i++; // i becomes 4

j--; // j becomes 2

 preincrement

int i = 3, j = 3;

++i; // i becomes 4

--j; // j becomes 2

Object Oriented programming Lecture 2

13

