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Our goal 

In this lecture will talk about the following:

❑ understand the principles behind the network control plane:

▪ traditional routing algorithms

▪ SDN controllers

▪ network management, configuration

❑ Instantiation, implementation in the Internet:

▪ OSPF, BGP

▪ OpenFlow, ODL and ONOS controllers

▪ Internet Control Message Protocol: ICMP

▪ SNMP, YANG/NETCONF



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Network-layer functions

▪ forwarding: move packets from router’s 
input to appropriate router output

data plane

control plane▪ routing: determine route taken by 
packets from source to destination



Per-router control plane

Individual routing algorithm components in each and every 
router interact in the control plane
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Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers
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Per-router 
control plane

SDN control plane



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers

▪ path: sequence of routers packets 
traverse from given initial source host 
to final destination host

▪ “good”: least “cost”, “fastest”, “least 
congested”

▪ routing: a “top-10” networking 
challenge!

Routing protocols
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
             e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or inversely related to 
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification

global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



Dijkstra’s link-state routing algorithm

▪ centralized: network topology, link 
costs known to all nodes
• accomplished via “link state 

broadcast” 

• all nodes have same info

▪ computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know 
least cost path to k destinations

▪ cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors

▪ D(v): current estimate of cost 
of least-cost-path from source 
to destination v

▪ p(v): predecessor node along 
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation



Dijkstra’s link-state routing algorithm

1  Initialization: 
2   N' = {u}                               /* compute least cost path from u to all other nodes */

3    for all nodes v 
4      if v adjacent to u            /* u initially knows direct-path-cost only to  direct neighbors    */

5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */

6      else D(v) = ∞ 
7 

8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N' 

find w not in N' such that D(w) is a minimum 
add w to N' 
update D(v) for all v adjacent to w and not in N' : 
     D(v) = min ( D(v),  D(w) + cw,v  ) 
/* new least-path-cost to v is either old least-cost-path to v or known 

least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example

Step
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u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

D(w),p(w)

5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0): 
      For all a: if a adjacent to u then D(a) = cu,a 



Dijkstra’s algorithm: an example

Step
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8   Loop 
9     
10    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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Dijkstra’s algorithm: an example

Step
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N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
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8   Loop 
9     
10
11    

 find a not in N' such that D(a) is a minimum 
 add a to N' 

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 
D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 
D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  



Dijkstra’s algorithm: an example

Step
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Dijkstra’s algorithm: an example

Step
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 
D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  



Dijkstra’s algorithm: an example

Step
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw



update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 

Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example

Step
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 



Dijkstra’s algorithm: an example
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resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x 



Dijkstra’s algorithm: another example
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uwxv 14,x 10,v 

uwxvy 12,y 

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)
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Dijkstra’s algorithm: discussion

algorithm complexity: n nodes

▪ each of n iteration: need to check all nodes, w, not in N

▪ n(n+1)/2 comparisons: O(n2) complexity

▪ more efficient implementations possible: O(nlogn)

message complexity: 

▪ each router must broadcast its link state information to other n routers 

▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 
broadcast message from one source

▪ each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible

▪ when  link costs depend on traffic volume, route oscillations possible
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▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent
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Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Let Dx(y): cost of least-cost path from x to y.

Then:

   Dx(y) = minv { cx,v + Dv(y) }

   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

                    cu,x + Dx(z),

                    cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

           1 + 3,

           5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



Distance vector algorithm 

key idea: 
▪ from time-to-time, each node sends its own distance vector estimate 

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  

iterative, asynchronous: each local 
iteration caused by: 

▪ local link cost change 

▪ DV update message from neighbor
wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes

▪ neighbors then notify their 
neighbors – only if necessary

▪ no notification received, no 
actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have 
distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1



Distance vector example: iteration

g h i
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration

g h i
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

g h i
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8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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DV in b:
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Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c
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DV in c:
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De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation

DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞
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t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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from b
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Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 

t=2 

t=3 

t=4 



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not 
change, so y does not send a message to z. 

link cost changes:
▪ node detects local link cost change 

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors 

x z

14

50

y
1



Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity 
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions.  Distributed algorithms are tricky!



Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n2) messages sent  

DV: exchange between neighbors; 
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 

• router can advertise incorrect link cost

• each router computes only its own 
table

DV:

• DV router can advertise incorrect path 
cost (“I have a really low-cost path to 
everywhere”): black-holing

• each router’s DV is used by others: 
error propagate thru network



Network layer: “control plane” roadmap

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



our routing study thus far - idealized 
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

scale: billions of destinations:
▪ can’t store all destinations in 

routing tables!

▪ routing table exchange would 
swamp links! 

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to 
control routing in its own network



aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

intra-AS (aka “intra-domain”): 
routing among routers within same 
AS (“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different 

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS, 

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”): 
routing among AS’es

▪ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table  configured by intra- 
and inter-AS routing algorithms

Intra-AS

Routing 
Inter-AS

Routing ▪ intra-AS routing determine entries for 
destinations within AS

▪ inter-AS & intra-AS determine entries 
for external destinations



Inter-AS routing:  a role in intradomain forwarding

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3
2. propagate this reachability info to all 

routers in AS1

• router should forward packet to 
gateway router in AS1, but which 
one?



Intra-AS routing:  routing within an AS

most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪  OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF



OSPF (Open Shortest Path First) routing

▪ “open”: publicly available

▪ classic link-state 
• each router floods OSPF link-state advertisements (directly over IP 

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute 
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious 
intrusion) 



Hierarchical OSPF

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach 
other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF limited 
to backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to outside 

via area border router
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END OF LECTURE

END OF LECTURE (6) PART A 

Keep connected with the classroom 

lmzcbsf

THANK YOU FOR YOUR ATTENTION
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