
NETWORK PROTOCOLS

Asst. Prof. DR. MUHANED TH. M. AL-HASHIMI

Tikrit University

Collage Of Computer And Mathematical Science

2024 - 2025

NETWORK LAYER (CONTROL PLANE)
AND

NETWORK LAYER PROTOCOLS

LECTURE (6) PART A

2204 - 2025

11 November

Our goal

In this lecture will talk about the following:

❑ understand the principles behind the network control plane:

▪ traditional routing algorithms

▪ SDN controllers

▪ network management, configuration

❑ Instantiation, implementation in the Internet:

▪ OSPF, BGP

▪ OpenFlow, ODL and ONOS controllers

▪ Internet Control Message Protocol: ICMP

▪ SNMP, YANG/NETCONF

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Two approaches to structuring network control plane:
▪ per-router control (traditional)

▪ logically centralized control (software defined networking)

Network-layer functions

▪ forwarding: move packets from router’s
input to appropriate router output

data plane

control plane▪ routing: determine route taken by
packets from source to destination

Per-router control plane

Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving

packet header

3

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving

packet header

Per-router
control plane

SDN control plane

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers

▪ path: sequence of routers packets
traverse from given initial source host
to final destination host

▪ “good”: least “cost”, “fastest”, “least
congested”

▪ routing: a “top-10” networking
challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Graph abstraction: link costs

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Dijkstra’s link-state routing algorithm

▪ centralized: network topology, link
costs known to all nodes
• accomplished via “link state

broadcast”

• all nodes have same info

▪ computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know
least cost path to k destinations

▪ cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors

▪ D(v): current estimate of cost
of least-cost-path from source
to destination v

▪ p(v): predecessor node along
path from source to v

▪ N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */

3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */

5 then D(v) = cu,v /* but may not be minimum cost! */

6 else D(v) = ∞
7

8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known

least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

D(w),p(w)

5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
 For all a: if a adjacent to u then D(a) = cu,a

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2
D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4
D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3
D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

Dijkstra’s algorithm: an example

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s algorithm: another example

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

algorithm complexity: n nodes

▪ each of n iteration: need to check all nodes, w, not in N

▪ n(n+1)/2 comparisons: O(n2) complexity

▪ more efficient implementations possible: O(nlogn)

message complexity:

▪ each router must broadcast its link state information to other n routers

▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

▪ each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible

▪ when link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Let Dx(y): cost of least-cost path from x to y.

Then:

 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

 cu,x + Dx(z),

 cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

 1 + 3,

 5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-
cost path to destination (z)

Distance vector algorithm

key idea:
▪ from time-to-time, each node sends its own distance vector estimate

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

iterative, asynchronous: each local
iteration caused by:

▪ local link cost change

▪ DV update message from neighbor
wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

▪ neighbors then notify their
neighbors – only if necessary

▪ no notification received, no
actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have
distance estimates
to nearest
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector to
their neighbors

Distance vector example: iteration

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at
t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector computations
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network:

t=1

t=2

t=3

t=4

Distance vector: link cost changes

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV. y’s least costs do not
change, so y does not send a message to z.

link cost changes:
▪ node detects local link cost change

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors

x z

14

50

y
1

Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.
…

▪ see text for solutions. Distributed algorithms are tricky!

Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n2) messages sent

DV: exchange between neighbors;
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:

• router can advertise incorrect link cost

• each router computes only its own
table

DV:

• DV router can advertise incorrect path
cost (“I have a really low-cost path to
everywhere”): black-holing

• each router’s DV is used by others:
error propagate thru network

Network layer: “control plane” roadmap

▪ network management,
configuration
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message
Protocol

our routing study thus far - idealized
▪ all routers identical
▪ network “flat”

… not true in practice

Making routing scalable

scale: billions of destinations:
▪ can’t store all destinations in

routing tables!

▪ routing table exchange would
swamp links!

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to
control routing in its own network

aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)

Internet approach to scalable routing

intra-AS (aka “intra-domain”):
routing among routers within same
AS (“network”)
▪ all routers in AS must run same intra-

domain protocol
▪ routers in different AS can run different

intra-domain routing protocols
▪ gateway router: at “edge” of its own AS,

has link(s) to router(s) in other AS’es

inter-AS (aka “inter-domain”):
routing among AS’es

▪ gateways perform inter-domain
routing (as well as intra-domain
routing)

Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra-
and inter-AS routing algorithms

Intra-AS

Routing
Inter-AS

Routing ▪ intra-AS routing determine entries for
destinations within AS

▪ inter-AS & intra-AS determine entries
for external destinations

Inter-AS routing: a role in intradomain forwarding

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable

through AS2, which through AS3
2. propagate this reachability info to all

routers in AS1

• router should forward packet to
gateway router in AS1, but which
one?

Intra-AS routing: routing within an AS

most common intra-AS routing protocols:

▪ RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪ EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪ OSPF: Open Shortest Path First [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as OSPF

OSPF (Open Shortest Path First) routing

▪ “open”: publicly available

▪ classic link-state
• each router floods OSPF link-state advertisements (directly over IP

rather than using TCP/UDP) to all other routers in entire AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to compute
forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious
intrusion)

Hierarchical OSPF

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to reach
other destinations

area border routers:
“summarize” distances to
destinations in own area,
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router:
runs OSPF limited
to backbone

boundary router:
connects to other ASes

local routers:
• flood LS in area only
• compute routing within

area
• forward packets to outside

via area border router

Acknowledgment

▪These lecture slides are based on:

1) Chapter 5 (P 407-429) from the book “Computer Networking: A

Top-Down Approach, Eighth Edition, Global Edition” by (James

F. Kurose and Keith W. Ross’s).

END OF LECTURE

END OF LECTURE (6) PART A

Keep connected with the classroom

lmzcbsf

THANK YOU FOR YOUR ATTENTION

	Slide 1: Network Protocols
	Slide 2: network layer (control plane) and network layer Protocols
	Slide 3: Our goal
	Slide 4: Network layer: “control plane” roadmap
	Slide 5: Network-layer functions
	Slide 6: Per-router control plane
	Slide 7: Software-Defined Networking (SDN) control plane
	Slide 8: Per-router control plane
	Slide 9: Network layer: “control plane” roadmap
	Slide 10: Routing protocols
	Slide 11: Graph abstraction: link costs
	Slide 12: Routing algorithm classification
	Slide 13: Network layer: “control plane” roadmap
	Slide 14: Dijkstra’s link-state routing algorithm
	Slide 15: Dijkstra’s link-state routing algorithm
	Slide 16: Dijkstra’s algorithm: an example
	Slide 17: Dijkstra’s algorithm: an example
	Slide 18: Dijkstra’s algorithm: an example
	Slide 19: Dijkstra’s algorithm: an example
	Slide 20: Dijkstra’s algorithm: an example
	Slide 21: Dijkstra’s algorithm: an example
	Slide 22: Dijkstra’s algorithm: an example
	Slide 23: Dijkstra’s algorithm: an example
	Slide 24: Dijkstra’s algorithm: an example
	Slide 25: Dijkstra’s algorithm: an example
	Slide 26: Dijkstra’s algorithm: an example
	Slide 28: Dijkstra’s algorithm: an example
	Slide 29: Dijkstra’s algorithm: another example
	Slide 30: Dijkstra’s algorithm: discussion
	Slide 31: Dijkstra’s algorithm: oscillations possible
	Slide 32: Network layer: “control plane” roadmap
	Slide 33: Distance vector algorithm
	Slide 34: Bellman-Ford Example
	Slide 35: Distance vector algorithm
	Slide 36: Distance vector algorithm:
	Slide 37: Distance vector: example
	Slide 38: Distance vector example: iteration
	Slide 39: Distance vector example: iteration
	Slide 40: Distance vector example: iteration
	Slide 41: Distance vector example: iteration
	Slide 42: Distance vector example: iteration
	Slide 43: Distance vector example: iteration
	Slide 44: Distance vector example: iteration
	Slide 45: Distance vector example: computation
	Slide 46: Distance vector example: computation
	Slide 47: Distance vector example: computation
	Slide 48: Distance vector example: computation
	Slide 49: Distance vector example: computation
	Slide 50: Distance vector: state information diffusion
	Slide 51: Distance vector: link cost changes
	Slide 52: Distance vector: link cost changes
	Slide 53: Comparison of LS and DV algorithms
	Slide 54: Network layer: “control plane” roadmap
	Slide 55: Making routing scalable
	Slide 56: Internet approach to scalable routing
	Slide 57: Interconnected ASes
	Slide 58: Inter-AS routing: a role in intradomain forwarding
	Slide 59: Intra-AS routing: routing within an AS
	Slide 60: OSPF (Open Shortest Path First) routing
	Slide 61: Hierarchical OSPF
	Slide 62: Acknowledgment
	Slide 63: END OF LECTURE

