
Prepared & Presented by

Mohammed B. Omar

2023 -2024

Lecture 6 :
Circular queue College of computer science & mathematics

Dep. Of Computer Science

2

Definition of Circular queue
Circular queue is a linear data structure. It follows FIFO principle. In circular queue

the last node is connected back to the first node to make a circle. Elements are

added at the rear end and the elements are deleted at front end of the queue.

Queue

Lecture 9

2

Queue
In a normal Queue Data Structure, we can insert elements until queue becomes full.

But once if queue becomes full, we cannot insert the next element until all the

elements are deleted from the queue.

For example consider the queue below...

After inserting all the elements into the queue.

Queue

Lecture 9

8825 30 51 60 85 45 90 75 95

front rear
Queue is Full

2

Now consider the following situation after deleting three elements from the
queue...

Queue

Lecture 9

8860 85 45 90 75 95

front rear

Queue is Full (even three elements are deleted)
This situation also says that Queue is Full and we cannot insert the new element because,
'rear' is still at last position. In above situation, even though we have empty positions in the
queue we cannot make use of them to insert new element. This is the major problem in
normal queue data structure. To overcome this problem we use circular queue data
structure.

2

What is Circular Queue?
A Circular Queue can be defined as follows... Circular Queue is also a linear data

structure, which follows the principle of FIFO(First In First Out), but instead of

ending the queue at the last position, it again starts from the first position after the

last, hence making the queue behave like a circular data structure.

Graphical representation of a circular queue is as follows...

Queue

Lecture 9

front

rear

When the queue is empty, REAR
is initialized to (0,-1,maxsize)
and FRONT is initialized to 0.

Rear = (Rear+1)%MaxSize

2

Basic operations in Queue

Queue

Lecture 9

Front
-1

Rear
-1

0

1

2

34

5

6

7 0

1

2

34

5

6

7

6

9

3

128

Front
0

Rear
4

Empty queue Enqueuing five items

front

rear

2

Basic operations in Queue

Queue

Lecture 9

Front
2

Rear
4

0

1

2

34

5

6

7

6

9

3

128

4

Front
2

Rear
7

Dequeuing two items Enqueuing six items

0

1

2

34

5

6

7

3

128

2

Application of Circular Queue

Queue

Lecture 9

Below we have some common real-world examples where circular queues are

used:

1. Computer controlled Traffic Signal System uses circular queue.

2. CPU scheduling and Memory management.

2

Comparison between Queue and Circular Queue:

Queue

Lecture 9

LINEAR QUEUE CIRCULAR QUEUE
A linear data structure that
stores data as a sequence of
element similar to real world
queue

A linear data structure in which
the last item connects back to first
item forming a circle.

Possible to enter new items
from the rear end and remove
the items from the front.

Possible to enter and remove
elements from any position.

Requires more memory Requires less memory
Less efficient More efficient

2

Implementation of Circular Queue

Queue

Lecture 9

To implement a circular queue data structure using array, we first perform the following steps before we
implement actual operations.

• Step 1: Include all the header files which are used in the program and define a constant 'SIZE' with specific value.

• Step 2: Declare all user defined functions used in circular queue implementation.

• Step 3: Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

• Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front = -1, rear = -1)

• Step 5: Implement main method by displaying menu of operations list and make suitable function calls to

perform operation selected by the user on circular queue.

2

EnQueue(value) - Inserting value into the Circular Queue

Queue

Lecture 9

In a circular queue, enQueue() is a function which is used to insert an element into the

circular queue. In a circular queue, the new element is always inserted at rear position.

The enQueue() function takes one integer value as parameter and inserts that value into

the circular queue. We can use the following steps to insert an element into the circular

queue...

2

EnQueue Algorithm:

Queue

Lecture 9

1. If (((REAR +1) Mod MaxQueue) = FRONT) Then

2. Print: Overflow

3. Else

Begin

4. ITEM [REAR] = Data

5. Set REAR = (REAR +1) Mod MaxQueue [Increment REAR by 1]

6. Print: Data inserted

End

7. Exit

Description: Here ITEM is an array with MaxQueue locations. FRONT and REAR points to the front and rear of the
QUEUE. Data is the value to be inserted.

2

DeQueue() - Deleting a value from the Circular Queue

Queue

Lecture 9

In a circular queue, deQueue() is a function used to delete an element from the circular

queue. In a circular queue, the element is always deleted from front position. The

deQueue() function doesn't take any value as parameter. We can use the following steps

to delete an element from the circular queue...

2

DeQueue Algorithm:

Queue

Lecture 9

1. If (FRONT = REAR) Then [Check for underflow]

2. Print: Underflow

3. Else

Begin

4. Data = ITEM [FRONT]

5. Set FRONT = (FRONT +1) Mod MaxQueue [Increment FRONT by 1]

6. Print: Data deleted

End

7. Exit

Description: Here ITEM is an array with MaxQueue locations. FRONT and REAR points to the front and
rear of the QUEUE. Data is the value to be inserted.

2

Queue creation:

Queue

Lecture 9

The Circular queue in the programming language, can be defined as a structure, struct to represent the
Circular queue includes:
1. Data: items is an array used to store the elements of the queue.
2. Integer variables FRONT and REAR points to the front and rear of the queue.

#define MaxQueue 100

struct CircularQueue{

int front , rear;

int items[MaxQueue];

};

Declared a variable of type struct
CircularQueue to reserve space for the queue:

struct CircularQueue;

2

Function Empty()

Queue

Lecture 9

int empty(struct CircularQueue cq)

{

if (cq.front == cq.rear)

return 1;

else

return 0;

}

Thank You
&

Good luck

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

