
Prepared & Presented by

Mohammed B. Omar

2023 -2024

Lecture 4 : StackCollege of computer science & mathematics

Dep. Of Computer Science

2

Stack:

Stack

Lecture 5

What is Stack?

• Stack is a linear data structure in which the insertion and deletion operations are performed at only one end.

In a stack, adding and removing of elements are performed at a single position which is known as "top". That means, a new

element is added at top of the stack and an element is removed from the top of the stack. In stack, the insertion and deletion

operations are performed based on LIFO (Last In First Out) principle.

• A stack is a homogeneous collection of items of one type, arranged linearly with access at one end only.

PUSH POPTOP

2

Stack:

Stack

Lecture 5

Stacks associated with two basic operation i.e PUSH and POP.

 Push function means addition an element to the stack.

 Pop function means remove an element from the stack.

3

Stack:

Stack

Lecture 5

In the figure, PUSH and POP operations are performed at a top position in the stack. That means, both the insertion and

deletion operations are performed at one end (i.e., at Top)

 It is type of linear data structure.

 It follows LIFO (Last In First Out) property.

 It has only one pointer TOP that points the last or top most element of Stack.

 Insertion and Deletion in stack can only be done from top only.

 Initially, the top is set to -1. Whenever we want to insert a value into the stack, increment the top value by one and then

insert. Whenever we want to delete a value from the stack, then delete the top value and decrement the top value by one.

 Insertion in stack is also known as a PUSH operation.

 Deletion from stack is also known as POP operation in stack.

PUSH POPTOP

3

There are some operations of Stack.

Stack

Lecture 5

4

Stack:

Stack

Lecture 5

Basic features of Stack

1. As all the deletion and insertion in a stack is done from top of the stack, the last added element will be the first to be

removed from the stack.

2. This is the reason why the stack is also called Last In – First Out (LIFO) type of list.

3. It is interesting to notice that the most frequently accessible element in the stack are the most top elements, while the least

accessible elements located at the bottom of the stack.

4. Stack is an ordered list of similar data type.

TOP

10

2

4

9

0

1

2

3

4

Figure represents a stack with the size of Five locations and includes Four elements.

5

Stack:

Stack

Lecture 5

The stack can be represented using a single array with the required capacity (SIZE) and the appropriate type of data

(DATATYPE) that will be stored in it (INT, FLOAT, ...etc.) with the use of an independent variable called (TOP) that is used

as an indicator indicating the location of the highest element in the stack. Starting with the value of the indicator (TOP = -1)

when the stack is free of elements, and the stack is defined programmatically in a language C++ :

TOP

10

2

4

9

0

1

2

3

4
const int size = 9 ; {or any other value}

int stackelement; {or any other type}

stackelement stack[size];

Int top;

6

Stack:

Stack

Lecture 5

There are two basic operations that can be performed on the stack, these are:

1. PUSH: is the process of adding a new element to the top of the stack. As a new element pushed to the stack, top will be

incremented by one and denote to the added element. Adding a new element when the stack is full is called stack overflow.

2. POP: is the process of deleting an element from the top of the stack. After every pop operation, the top is decremented by

one. If there are no elements in the stack and pop operation is performed, the result is called stack underflow.

Figure show an example of push and pop operations

١0

1

2

3

4

١

2

0

1

2

3

4

Empty stack Push Push Push POP

١

2

٣

0

1

2

3

4

١

2

٣

0

1

2

3

4

0

1

2

3

4

7

Stack:

Stack

Lecture 5

empty

10

20

30

40

0

1

2

3

10

20

30

40

0

1

2

3

10

20

30

0

1

2

3

10

20

0

1

2

3

100

1

2

3

Top = 3
Top = 2

Pop = 40
Top = 1

Pop = 30

Top = 0
Pop = 20

Top = -1
Pop = 10 Top = -1

Stack is full

8

Stack:

Stack

Lecture 5

Case One

TOP = Null
Max = 5

Empty Stack

[0]

[1]

[2]

[3]

[4]

TOP = [3]
Max = 5

[0]

[1]

[2]

[3]

[4]

10

2

6

8

Case Two

TOP = [4]
Max = 5

Full Stack
Top = Max - 1

[0]

[1]

[2]

[3]

[4]

10

2

6

8

7

Case Three

9

Stack:

Stack

Lecture 5

1. Insertion in Stack/Push Operation

The process of putting a new data element onto stack is known as a Push Operation. Push operation involves a series of

steps −

 Step 1 − Checks if the stack is full. If Top = Max -1 then the stack is full and no more insertion can be done

 Step 2 − If the stack is full, display “stack is FULL”and exit. An overflow message is printed.

 Step 3 − If the stack is not full, increments top to point next empty space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

9

Stack:

Stack

Lecture 5

Step 1: [Check for stack overflow]
if top >=MAXSTACK
cout<< "Stack overflow" and exit

Step 2: [Increment the pointer value by one]
top=top+1

Step 3: [Insert the item]
arr[top]=value

Step 4: Exit

10

Stack:

Stack

Lecture 5

STEP 1 : IF TOP = MAX -1
PRINT “ OVERFLOW”
GO TO STEP 4

[END OF IF]

STEP 2 : SET TOP = TOP + 1;
STEP 3 : SET STACK[TOP] = DATA;

STEP 4 : END

Algorithm to Insert an Element in stack

TOP = 3
Max = 5

Top = Max – 1
5 - 1

= 4
Top = Top + 1

= 3 + 1
= 4

Stack[4]= E

11

Stack:

Stack

Lecture 5

2. Deletion/Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In an array implementation of pop()

operation, the data element is not actually removed, instead top is decremented to a lower position in the stack to point to

the next value.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty. Check if Top = Null mean that stack is empty and no more deletion can be done.

 Step 2 − If the stack is empty, produces an error and exit. An Underflow message is printed.

 Step 3 − If the stack is not empty, accesses the data element at which top is pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

11

Stack:

Stack

Lecture 5

Step 1: [Check whether the stack is empty]
if top = -1

cout<< " Stack underflow " and exit
Step 2: [Remove the top most item]

value=arr[top]
top=top-1

Step 3: [Return the item of the stack]
return(value)

12

Stack:

Stack

Lecture 5

STEP 1 : IF TOP = NULL
PRINT “UNDERFLOW”
GO TO STEP 4

[END OF IF]

STEP 2 : SET VAL = STACK [TOP]
STEP 3 : SET TOP = TOP – 1
STEP 4 : END

TOP = 4
Val = stack [4]

Val = E
Top = top – 1

= 4 - 1
Top = 3

13

Stack:

Stack

Lecture 5

display() - Displays the elements of a Stack

We can use the following steps to display the elements of a stack...

 Step 1 - Check whether stack is EMPTY. (top == -1)

 Step 2 - If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

 Step 3 - If it is NOT EMPTY, then define a variable 'i' and initialize with top. Display stack[i] value and decrement i

value by one (i--).

 Step 3 - Repeat above step until i value becomes '0'.

14

Stack:

Stack

Lecture 5

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the following functionality is

added to stacks:

• peek() − get the top data element of the stack, without removing it.

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always represents the top of the

stack, hence named top. The top pointer provides top value of the stack without actually removing it. First we should learn

about procedures to support stack functions .

15

Stack:

Stack

Lecture 5

Returns value of topmost element in stack (Peek)

- Peek is an operation that returns the value of the topmost element of the stack without deleting it from the stack.
- However , the peek operation first checks if the stack is empty, if TOP = Null, then an appropriate message is printed,

else the value is returned.

STEP 1 : IF TOP = NULL
PRINT “STACK IS EMPTY”
GO TO STEP 3

STEP 2 : RETURN STACK[TOP]
STEP 3 : END

TOP = 3
Return stack [3]

= D

16

Stack:

Stack

Lecture 5

Isfull()

STEP 1 : IF TOP = MAXSIZE
RETURN TRUE

[END OF IF]

STEP 2 : RETURN FALSE
STEP 3 : END

Isempty()

STEP 1 : IF TOP == -1
RETURN TRUE

[END OF IF]

STEP 2 : RETURN FALSE
STEP 3 : END

16

Where are Stacks used?

Stack

Lecture 5

• Stack frames are used to store return addresses, parameters, and local variables in a

function calling.

• Computer graphics (OpenGL). The sequence of transformations uses a last-specified,

first-applied rule. Thus, a stack of transformations is maintained.

• Robotics: Instructions are stores in a stack. We can apply stack controllers such as repeat

loops to these stacks.

• Architecture of computers uses stacks to do arithmetic's (eg. Intel FPU).

17

Stack:

Stack

Lecture 5

Stack Terminology

1. Size: this term refers to the maximum size of the stack or the number of possibly added elements.

2. TOP: this term refers to the top of the stack. It is a stack pointer used to check overflow and under flow conditions. The

initial value of TOP is -1 when the stack is empty.

3. Stack underflow: is the situation when the stack contains no elements. At this point the top of the stack points to the

stack bottom.

4. Stack overflow: is the situation when the stack is full and no more elements can be added. At this point the top of the

stack points to the highest location in the stack. See figure.

18

Stack:

Stack

Lecture 5

Example 1:
What is the obtained string after performing the following sequence of push and pop:
PUSH(A), PUSH(B), POP, PUSH(C), POP, PUSH(D), PUSH(E), POP, POP, POP

19

Stack:

Stack

Lecture 5

Example 2:
What is the obtained number after performing the following sequence of push and pop:
PUSH(1), POP, PUSH(2), PUSH(3), POP, PUSH(4), POP, PUSH(5), POP, POP.
Solution:

Step Operation Stack Output

1- PUSH(1) 1

2- Pop ……. 1

3- PUSH(2) 2 1

4- PUSH(3) 2 3 1

5- POP 2 1 3

6- PUSH(4) 2 4 1 3

7- POP 2 1 3 4

8- PUSH(5) 2 5 1 3 4

9- POP 2 1 3 4 5

10- POP ……. 1 3 4 5 2

So the obtained number is (13452)

20

Stack:

Stack

Lecture 5

Example 2:
What is the obtained number after performing the following sequence of push and pop:
PUSH(1), POP, PUSH(2), PUSH(3), POP, PUSH(4), POP, PUSH(5), POP, POP.
Solution:

[0]

[1]

[2]

[3]

[4]PUSH(1)

1

POP

PUSH(2)

2

PUSH(3)
3

POP

PUSH(4)

4

POP

PUSH(5)

5

POP

POP

21

Stack:

Stack

Lecture 5

Example 3:
What is the required sequence of push and pop to obtain the string (CBDAE) from the initial input (ABCDE).
Solution:

22

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
A- 2 4 5 3 1
B- 4 2 3 1 5

Suppose that S means Stacking, which symbolizes the process of adding an element to the stack, and U means Unstacking,
which symbolizes the process of deleting an element from the stack.

A- 2 4 5 3 1
 To output element 2, you must first enter elements 1 and 2, meaning that the sequence of performing the operations

is:
SSU 122

 To output item 4, after item 2 you must enter items 3,4, that is, the sequence of execution of operations in this case:
SSU 344
SSUSSU

Solution:

1

1
3

23

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
A- 2 4 5 3 1
B- 4 2 3 1 5

A- 2 4 5 3 1
 To output item 5, after item 4 you must enter items 5, and then output items 5, that is, the sequence of execution of

operations in this case:
SU  55
SSUSSUSU

 According to the current state of the stack, elements 1 and 3 can be output sequentially, that is, the sequence of
execution of operations is:

UU 31
SSUSSUSUUU

So, such outputs can be obtained if the sequence of operations is in the final form while observe to the order of the
inputs.

Solution:

1
3

24

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
A- 2 4 5 3 1

Step Operation Stack Output

1- PUSH(1) 1

2- PUSH(2) 12

3- POP 1 2

4- PUSH(3) 13 2

5- PUSH(4) 134 2

6- POP(4) 13 24

7- PUSH(5) 135 24

8- POP(5) 13 245

9- POP(3) 1 2453

10- POP(1) 24531

25

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
A- 2 4 5 3 1
B- 4 2 3 1 5

Suppose that S means Stacking, which symbolizes the process of adding an element to the stack, and U means Unstacking,
which symbolizes the process of deleting an element from the stack.

B- 4 2 3 1 5
 To output element 4, you must first enter elements 1,2,3 and 4, meaning that the sequence of performing the

operations is:
SSSSU 1234

 To remove element 2 from the stack in its current state, element 3 must be removed before it, so this sequence of
outputs 4, 2, 3, 1, 5 cannot be executed.

Solution:

1
2
3

26

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
B- 4 2 3 1 5

Solution: Step Operation Stack Output

1- PUSH(1) 1

2- PUSH(2) 12

3- PUSH(3) 123

4- PUSH(4) 1234

5- POP(4) 123 4

6- POP(3) 12 43

7- POP(2) 1 432

8- POP(1) 4321

9- PUSH(5) 5 4321

10- POP(5) 43215

2

Stack:

Stack

Lecture 5

Example 3:
If the stack input set is in order 1,2,3,4,5, which of the following outputs is correct according to the stack operation
method?
C- 4 5 1 2 3
D- 4 3 5 2 1

Solution:

2

Algebraic expression
 An algebraic expression is a legal combination of operands and the operators.

 Operand is the quantity (unit of data) on which a mathematical operation is

performed.

 Operand may be a variable like x, y, z or a constant like 5, 4,0,9,1 …...

 Operator is a symbol which signifies a mathematical or logical operation between

the operands.

 Example of familiar operators include +,-,*, /, ^

 Considering these definitions of operands and operators now we can write an

example of expression as A*B+C.

Algebraic expression

Lecture 7

4

Expression Parsing

Algebraic expression

Lecture 7

An arithmetic expression can be written in three different .notationThe way to write arithmetic expression is known as a
but equivalent notations, i.e., without changing the essence or output of an expression. These notations are:
1. Infix Notation
2. Prefix (Polish) Notation
3. Postfix (Reverse-Polish) Notation

1. Infix Notation:
We write expression in infix notation, e.g. a-b+c, where operators are used in-between operands. It is easy for us
humans to read, write, and speak in infix notation but the same does not go well with computing devices. An
algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

2. Prefix Notation
In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands. For example, +ab. This
is equivalent to its infix notation a+b. Prefix notation is also known as Polish Notation.

3. Postfix Notation
This notation style is known as Reversed Polish Notation. In this notation style, the operator is postfixed to the
operands i.e., the operator is written after the operands. For example, ab+.

4

Expression Parsing

Algebraic expression

Lecture 7

Arithmetic Expressions
1- Infix notation

An operator appears between its operands
Example : a + b
a + b * c + (d * e + f) * g

2- Prefix notation

An operator appears before its operands
Example : + a b
++a*bc*+*defg

3- Postfix notation

An operator appears after its operands
Example : a b +
abc*+de*f+g*+

4

Expression Parsing

Algebraic expression

Lecture 7

Operator Precedence Associativity

1. brackets { , [, (

2. Exponentiation ^ Highest Right Associative

3. Multiplication (*) & Division (/) Second Highest Left Associative

4. Addition (+) & Subtraction (−) Lowest Left Associative .

2

Examples

Infix Postfix Prefix
A + B AB + +AB

(A + B) * (C + D) AB+CD+* *+AB+CD
A – B / (C * D ^ E) ABCDE^*/- -A/B*C^DE

Algebraic expression

Lecture 7

2

Infix to Postfix (RPN) Algorithm

Algebraic expression

Lecture 7

Scan the Infix from Left to Right, Output to RPN from Left to Right

1. Operator

 Pop and Output all higher priority operators from Stack

 Push the operator on Stack

2. “(“: Push it on Stack

3. “)“: Pop and Output all operators from Stack until “(“ is Popped.

4. Operand: Output it

5. Finish: Pop and Output all Remainders.

2

Examples
Infix to Postfix

Suppose that we would like to rewrite

A+B*C in postfix

 A+B*C

 A+(B*C) Parentheses for emphasis

 A+(BC*) Convert the multiplication, Let D=BC*

 A+D Convert the addition

 A(D)+ Replace the variable D with its imposed value

 ABC*+ Postfix Form

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

(a + b – c) * d – (e + f)

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

a + b – c) * d – (e + f)

(

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

+ b – c) * d – (e + f)

(a

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

+ b – c) * d – (e + f)

(a

+

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

– c) * d – (e + f)

(a

+

b

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

c) * d – (e + f)

(a

-

b +

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

) * d – (e + f)

(a

-

b + c

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

* d – (e + f)

a b + c -

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

d – (e + f)

a b + c -*

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

– (e + f)

a b + c -* d

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

(e + f)

a b + c -- d *

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

e + f)

a b + c -- d *

(

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

+ f)

a b + c -- d *

(

e

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

f)

a b + c -- d *

(

e

+

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

)

a b + c -- d *

(

e

+

f

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

a b + c -- d * e f +

Algebraic expression

Lecture 7

2

Examples

Infix expression

Postfix expression

a b + c - d * e f + -

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
1. A + B * C

Step Input Stack Output

1- A A

2- + + A

3- B + AB

4- * +* AB

5- C +* ABC

6- ABC*+

The postfix expression is: ABC*+

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
2. 3 + 4 * 5 / 6

Step Input Stack Output

1- 3 3

2- + + 3

3- 4 + 34

4- * +* 34

5- 5 +* 345

6- / +/ 345*

7- 6 +/ 345*6

8- 345*6/+

The postfix expression is: 345*6/+

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
3. (30 + 23) * (43 -21) / (84 + 7) Step Input Stack Output

1- ((

2- 30 (30

3- + (+ 30

4- 23 (+ 30 23

5-) 30 23 +

6- * * 30 23 +

7- (*(30 23 +

8- 43 *(30 23 + 43

9- - *(- 30 23 + 43

10- 21 *(- 30 23 + 43 21

11-) * 30 23 + 43 21 -

12- / / 30 23 + 43 21 - *

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
3. (30 + 23) * (43 -21) / (84 + 7)

Step Input Stack Output

13- (/(30 23 + 43 21 - *

14- 84 /(30 23 + 43 21 - * 84

15- + /(+ 30 23 + 43 21 - * 84

16- 7 /(+ 30 23 + 43 21 - * 84 7

17-) / 30 23 + 43 21 - * 84 7 +

18- 30 23 + 43 21 - * 84 7+ /

The postfix expression is: 30 23 + 43 21 - * 84 7+ /

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
4. a – b * (c + d) / (e – f) ^ g * h Step Input Stack1 Stack2

1- A A

2- - A -

3- B Ab -

4- * Ab -*

5- (Ab -*(

6- C Abc -*(

7- + Abc -*(+

8- D Abcd -*(+

9-) Abcd+ -*

10- / Abcd+* -/

11- (Abcd+* -/(

12- E Abcd+*e -/(

Algebraic expression

Lecture 7

2

Expression Parsing
Example:
Convert the following infix expression to the equivalent postfix notation.
4. a – b * (c + d) / (e – f) ^ g * h

Step Input Stack1 Stack2

13- - Abcd+*e -/(-

14- F Abcd+*ef -/(-

15-) Abcd+*ef- -/

16- ^ Abcd+*ef- -/^

17- G Abcd+*ef-g -/^

18- * Abcd+*ef-g^/ -*

19- H Abcd+*ef-g^/h -*

20- Abcd+*ef-g^/h*- …………

Algebraic expression

Lecture 7

2

Postfix to Infix Algorithm

Algebraic expression

Lecture 7

Scan the RPN from Left to Right:

1. Operator:

- Pop ExpR and ExpL from Stack

- If prior(ExpR)<prior(Operator) then ExpR = “(“ & ExpR & “)”

- If prior(ExpL)<prior(Operator) then ExpL = “(“ & ExpL & “)”

- Push ExpL & Operator & ExpR on Stack

2. Operand: Push it on Stack

3. Finished: Pop and Output Infix

2

Algebraic expression

Lecture 7

EXPRESSION :- A + B * C

C * B + Ascan

CONVERSION OF INFIX TO PREFIX NOTATION

Character (C) scanned
Operator(*) scanned

Push (*) into the stack

Character (B) scanned
Priority of(*)is higher than (+),so(*)
operator is poped from the stack

Character(A) Scanned

Pop(+) from the stack

CONVERSION OF INFIX TO POSTFIX NOTATION

EXPRESSION :- A + B * C

A + B * CSCAN

Character(A) scanned
Operator(+)
scanned

Character (B)
scanned

Operator (*) scanned

Character (c) Scanned

Priority of (*) is
high, pop(*) from
the stack

pop (+) from
the stack

CONVERSION OF PREFIX TO POSTFIX NOTATION

EXPRESSION :- + A * B C

CB*A+scan

OPERATOR (+)SCANNED

CHARACTER (A) SCANNED

OPERATOR (*)SCANNED

CHARACTER(B) SCANNED
CHARACTER (C)SCANNED

Priority of (*) is
higher than (+) ,pop
(*) from the stack

Pop (+) from the stack

CONVERSION OF POSTFIX TO INFIX NOTATION

EXPRESSION :- A B + C *
SCAN A B + C *

Operator(*) scanned, push to the
stack

Character (C) scanned

Operator(+) scanned

Priority of (*) is higher than
(+),so (*) is pop from the stack

Push (+) to the stack

Scanned character
(B)

Pop (+) from the stack

Character (A) scanned

69

Converting Infix to Postfix with Stack

 Read expression from Left-to-Right and
 if an operand is read copy it to the output,
 if a left parenthesis is read push it into the stack,
 when a right parenthesis is encountered, the operator at the top of

the stack is popped off the stack and copied to the output until the
symbol at the top of the stack is a left parenthesis. When that occurs,
both parentheses are discarded,

 if an operator is scanned and has a higher precedence than the
operator at the top of the stack, the operator being scanned is pushed
onto the stack,

 while the precedence of the operator being scanned is lower than or
equal to the precedence of the operator at the top of the stack, the
operator at the top of the stack is popped and copied to the output,

 when the end of the expression is reached on the input scan, the
remaining operators in the stack are popped and copied to the output.

70

Example

*

(
–

(
*

Input: 4 * (2 – (6 * 3 + 4) * 2) + 1

Output:

*

(
–

(

+

*

(
–
*

*

4 2 6 3 * 4 + 2 * – *

+

1 +

71

Converting Infix to Prefix with Stack

 Read expression from Right-to-Left and
 if an operand is read copy it to the LEFT of the output,
 if a right parenthesis is read push it into the stack,
 when a left parenthesis is encountered, the operator at the top of the

stack is popped off the stack and copied to the LEFT of the output
until the symbol at the top of the stack is a right parenthesis. When
that occurs, both parentheses are discarded,

 if an operator is scanned and has a higher or equal precedence than
the operator at the top of the stack, the operator being scanned is
pushed onto the stack,

 while the precedence of the operator being scanned is lower than to
the precedence of the operator at the top of the stack, the operator at
the top of the stack is popped and copied to the LEFT of the output,

 when the end of the expression is reached on the input scan, the
remaining operators in the stack are popped and copied to the LEFT
of the output.

72

Example

+

)
*

)
+

Input: 4 * (2 – (6 * 3 + 4) * 2) + 1

Output:

–

*

+ * 4 – 2 * + * 6 4 2 13

+

)
*

+

)

+
*

73

Converting Infix to Prefix with Stack
2nd method

 Reverse the expression
 Read expression from Left-to-Right and

 if an operand is read copy it to the output (left-to-right),
 if a right parenthesis is read push it into the stack,
 when a left parenthesis is encountered, the operator at the top of the

stack is popped off the stack and copied to the output until the
symbol at the top of the stack is a right parenthesis. When that
occurs, both parentheses are discarded,

 if an operator is scanned and has a higher or equal precedence than
the operator at the top of the stack, the operator being scanned is
pushed onto the stack,

 while the precedence of the operator being scanned is lower than to
the precedence of the operator at the top of the stack, the operator at
the top of the stack is popped and copied to the output,

 when the end of the expression is reached on the input scan, the
remaining operators in the stack are popped and copied to the output.

 Reverse the output

74

Example

+

)
*

)
+

Input: 4 * (2 – (6 * 3 + 4) * 2) + 1

Output:

–

*

+*4–2*+*6421 3

+

)
*

+

)

+
*

1 +) 2 *) 4 + 3 * 6 (– 2 (* 4Reverse:

+ * 4 – 2 * + * 6 3 4 2 1Reverse Output:

75

Exercises

 Using stack diagrams convert the following
expressions into postfix and prefix forms of
polish notation:

a) 8 – 3  4 + 2
b) 8 – 3  (4 + 2)
c) (8 – 3)  (4 + 2)
d) (8 – 3)  4 + 2
e) (-a + b)  (c + a) – 5
f) 2 + ((-3 + 1)  (4 – 2) + 3)  6 – (1 + 2  3)
g) (5 > 4) and not (3 = 2 – 1)

76

Evaluation of Reverse Polish
Expressions

 Most compilers use the polish form to translate
expressions into machine language.

 Evaluation is done using a stack data-structure
 Read expression from left to right and build the stack of

numbers (operands).
 When an operator is read two operands are popped out

of the stack they are evaluated with the operator and the
result is pushed into the stack.

 At the end of the expression there must be only one
operand into the stack (the solution) otherwise ERROR.

77

5
3

3 4 6 2  + 8 3 – 2 5 –  4 +  + 2 6  –

3
4
6
2

6  2

3
4
12

4 + 12

3
16
8

8 – 3
2

3
16
5

2 – 5

-3

3
16
5

5  (-3)
4

3
16
-15

-15 + 4

3
16
-11

16  (-11)

3

-176

3 + (-176)

-173

2
6

2  6

-173

12

-173 – 12

-185Result =

78

Evaluation of Polish Expressions

 Evaluation is done using a stack data-structure
 Read expression from right to left and build the stack of

numbers (operands).
 When an operator is read two operands are popped

out of the stack they are evaluated with the operator
and the result is pushed into the stack.

 At the end of the expression there must be only one
operand into the stack (the solution) otherwise ERROR.

79

3

–  3 – 8  3 2 – ~ 4 – 6 2

2
6

6 – 2

4
4

-4

4
-4

-4 – 4

2
-8

3  2

6
-8

8

8 – 6

3

-8
2

3  2

-8

6

6 – (-8)

14Result =

Thank You
&

Good luck

