Lecture 7:
g College of computer science & mathematics Stru Ct & Recu I’Sion

DA'I'A STRUCTURE

L &S

Prepared & Presented by

Mohammed B. Omar

2023 -2024

Queue DA'I'A sTRUCTURi
Lecture 9 UL’

Struct

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Problem with Array

* Although arrays greatly improved our ability to store data, there is one major

drawback to their use ... each element (each box) in an array must be of the same

data tvpe.

* It is often desirable to group data of different types and work with that grouped
data as one entity. We now have the power to accomplish this grouping with a new

data type called a structure.

 Structure is a collection of variables of different data types under a single name. It is
similar to a class in that, both holds a collection of data of different data types.

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Problem Without Using Structure

It is also possible to create our own data types.

* A user defined data type is called a structure, class etc.
* A structure can contain both built-in data types and another structure.

* The concept of structure is pretty much the same as arrays except that in an array,
all the data is of the same types but in a structure, the data can be of different types.

Queue DATA STRUCTURE
Lecture 9 J

What a Structure is?

e For Example: You want to store some information about a person: his/her name, citizenship number and

salary. You can easily create different variables name, citNo, salary to store these information separately.

e However, in the future, you would want to store information about multiple persons. Now, we'd need to create

different variables for each information per person: namel, citNol, salaryl, name2, citNo2, salary2

e We can easily visualize how big and messy the code would looKk(25S!) < s g 4aliZ), Also, since no relation

between the variables (information) would exist, it's going to be a daunting task

(LM_S&LA:AWU_JMQ‘M‘Q&J&% A i Y).

® A better approach will be to have a collection of all related information under a single name Person, and use it

for every person. Now, the code looks much cleaner, readable and efficient as well.

e This collection of all related information under a single name Person is a structure.

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

What a Structure is?

“A structure is a collection of variables under a single name. These variables can be
of different types, and each has a name that is used to select it from the structure”

® There 1s always a requirement in most of our data processing applications that the
relevant data should be grouped and handled as a group

O (lermend cany dlall il bl o salie Loal clld) dadlee liphd sl 8 allaie Waily cllia
A sanaS Igiallaa g)

® In structure, we introduce a new data type

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Some More Info

® A structure can contain any data type including array and another structure
as well.

e Each variable declared inside structure 1s called member of structure.

® A structure may itself contain structures.

® A structure can be assigned to, as well as passed to, and returned from
functions. (.leie 4iale) 5 caall Wy 5l SIS 5 (JSoell cailla o umt (Say)

® We declare a structure using the keyword (struct).

Lecture 9 UL’LU

What a Structure is?

= Name » Employee ID
= Address = Name
Students — = Date of Bith Employee — = Department
= CGPA * Date of Joining
= Discipline = Salary
= Model
= Manufacturer company
Car — . Engine size
= Number of seats

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Steps to Create Structure

e Declare Structure
e |nitialize Members of Structure
e Access Structure Elements

Queue DATA sTRUCTURi
Lecture 9 UL’LU

Declaration of a Structure

® Declare Structure

> struct keyword 1s used for creating a structure.

e Structure Declaration Ways
> By struct keyword el el ok @
struct 4wy Ll iy @

> By declaring variable at the time of defining el i s 5 b il el @
gl Cay i iy 4 il Slely

structure.

Queue DATA sTRUCTURi
Lecture 9 UL’L’J
Declaration of a Structure

® The structure is declared by using the keyword struct followed by
structure name, also called a tag. Then the structure members
(variables) are defined with their type and variable names inside the
open and close braces { and }.

e Finally, the closed braces end with a semicolon denoted as ; following
the statement. The above structure declaration 1s also called a Structure
Specifier.

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Declaration of a Structure

Q Structures are syntactically declare with:

> Keyword struct

> Followed by the name of the structure

» The data, contained in the structure, is defined in the curly braces(da_aiall () 8Y))

Q All the variables that we have been using can be part of structure

Queue
Lecture 9

Declaration of a Structure
Syntax:

struct structure name

{
member typel member namel;
member type2 member name?2;

member type3 member name3;

DA'I'A STRUCTURE

bl

Queue DATA sTnucwRi
Lecture 9 CJL’LU

approach 1(Declaration of a Structure)

struct student

{

char name [60];
char address [100];

= Keyword/Tag
char discipline [50]9 struct student = Structure Name
float GPA; { "
|5 char name [60];

char address [100]; |__ Components
char discipline [50]; / Members
float GPA;

—_—

Queue DATA sTRucwRi
Lecture 9 UL’L’J

Declaration of a Structure

e Student is called the structure tag, and is your brand new data
type, like int, double or char.

® name, address, discipline, and GPA are structure members.

® Note: Memory is not allocated at the time of its declaration.
Memory is allocated when we declare structure variable.

Queue DA'I'A STRUCTURE
Lecture 9 J

ot e

Aot 5 JS Cay e die 35S0 8 dalie gl Gamadd o3 Y i(Structure Declaration) 4 ciy o Aic
2 A) IS I sy T Al iy jad g sil) 13l B il 3 SID (anadd Jiay Y STIUCE pladiuly ULl e dan g 58y 30 ae o
EaY 4adiud

struct Person {
char name[50];
int age;

I3

.age sname e ¢ sis g Person lld oL Lasd o3 aay 5 SIS L..gi Uanadd o al (JEall e 4

o sl 13 o gl i Ciy el vie Al £ 65 (e aiie Ciy jad die 3 SIAN anadd o i(Structure Variable) i) £ 68 (e it iy pl die
Al b saaad) Jiall e 2l s S b dalue (anadd Aall 6

struct Person personl;

Person 4l & cp, K3l age s name «uli aass persont 2SI 85 SIAN Gawnads) a3 ¢ pladd) 1

Queue DATA sTRucwRi
Lecture 9 UL’LU

Approach 1(Declaration of a Structure)

struct student struct car

{ {
string name; string model;
string address; string company;
string discipline; string engineSize;
float GPA; int price;

}; b

struct employee

{
string employeelD,;
string name;
string department;
float salary;

};

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Declaring Variables of Type struct

® The most efficient method of dealing with structure variables is to define
the structure_globally.

® This tells "the whole world", namely main and any functions in the
program, that a new data type exists.

To declare a structure globally, place it BEFORE int main().

® The structure variables can then be defined locally in main, for example.

Queue DATA STRUCTURE
Lecture 9 J

Declaring Variables of Type struct

struct STUDENT TYPE

{

string name, street, city, state, zipcode;
int age;

double ID num;

double grade;

¥

int main()

{

// declare two variables of the new type
STUDENT TYPE studentl, student2;

Queue DATA STRUCTUR
Lecture 9 UL’LL T i
Approach 2(Declaring Variables of Type struct)

struct STUDENT TYPE

d

string name, street, city, state, zipcode;
int age;

double ID num;

double grade;

)

student], student?2;

Queue

DA'I'A STRUCTURE
Lecture 9 UL’

Accessing Structure Members

® To access any member of a structure, we use the member access operator (.).

® The member access operator is coded as a period between the structure
variable name and the structure member that we wish to access.

e Remember we would use struct keyword to define variables of structure
type.

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Accessing Structure Members

® Suppose, you want to access age of structure variable studentl and
assign 1t 50 to i1t. we can perform this task by using following code
below:

studentl.age = 50;

e Tasking input as:

cin >> studentl.age;

Queue DA'I'A sTRucwRi

Lecture 9 UL’

Example 1 C++ Program to assign data to members of a structure
variable and display it.

Solution-1/3
#include <iostream>
using namespace std;
struct Person
{
char name[50]; Declare a Structure of Person
int age;

float salary;

I

Queue DATA STRUCTURE
e
Lecture 9 oJ - —
Solution-2/3
int main()

Structure Variable

{ Creating an object p1
of Person type like

— other Data type

cout << "Enter Full name: ";

Person p1;

cin.get(pl.name, 50);

Use Member
cout << "Enter age: ": Access Operator

cin >> pl.age;
cout << "Enter salary: ";
cin >> pl.salary;
//Displaying user Enter information
cout << "\nDisplaying Information." << end|;
cout << "Name: " << pl.name << end|;
cout <<"Age: " << pl.age << end|;
cout << "Salary: " << pl.salary;
return O;

Queue ~ DATA STRUCTURE

Lecture 9 J

Output of the Previous Program

Enter Full name: Adil Aslam

Enter age: 20
Enter salary: 1000S

Displaying Information.
Name: Adil Aslam

Age: 20

Salary: 1000S

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Initializing Structures

Like normal variable structures can be initialized at the time of declaration. Initialization
of structure 1s almost similar to initializing array. The structure object is followed by
equal sign and the list of values enclosed in braces and each value 1s separated with
comma.

S "“ MM\%@MJ&M\%M&S Lg_ﬁ.cu).cﬁ!\&_ﬁj@é\qdw\u\)aud\dsmm;@qu&

Example
Person pl={"Adil Aslam", 20, 1000}

DA'I'A STRUCTURE

Q
e bl

Lecture 9

Initializing Structures

e (1st Way)

struct student

{

string name;

string address;

string discipline;

float GPA;

s

student stdl = {"ADIL", "PAK", "BSCS",3.5};

Queue DATA STRUCTURE
Lecture 9 J

Initializing Structures

(2nd Way)

struct student

{ stdl.name = “ADIL";

string namie: std1.discipline " PAKY;___|
_ std1.salary = "BSCS";

string addr std1.GPA = 3.5; C\

string discipline;
float GPA;
3

Queue DATA STRUCTURE
Lecture 9 J

Example(Initializing Structures)

#include<iostream>

using namespace std;

struct Student

{

string Name;

string Address;

string Discipline;

float GPA;

}3

int main()

{

Student S = {""Adil Aslam", "PAK", "BSCS", 3.5};
cout << "nStudent Name : " << S.Name;

cout << "nStudent Address : " << S.Address;
cout << "nStudent Discipline : " << S. Discipline;
cout << "nStudent GPA : " << S. GPA;

}

Queue DA'I'A sTRUCTURi
Lecture 9 J

Output of the Previous Program

Student Name : Adil Aslam
Student Address : PAK

Student Discipline : BSCS
Student GPA: 3.5

Queue DATA sTRucwRi
Lecture 9 UL’L’J
Structure Variable in Assignment Statement

S1=1S82;

® The statement assigns the value of each member of S2 to the
corresponding member of S1.

e Note that one structure variable can be assigned to another only
when they are of the same structure type, otherwise complier will
give an error.

(ISl £ 58 L e LS5 Ladie) AT () aaly s uaie (pued (S Y 4l aaY

Queue DATA sTRUCTuni
Lecture 9 ULJLU

[Limitation with Structures are:

«=S1+ S2;
«S1-S2;
ST S 2
«S1/S2;

=S1=S2; J

Queue
Lecture 9

DATA STRUCTURE
CJ .

Problem Statement « Write a program which declares two variables of a structure and
copies the contents of first variable into the second variable.

#include <iostream>
using namespace std;
struct employee

{
int id;
string name;
double salary;
string address;

b

employee empl= {1, "Adil", 20000, "Pak_FSD"};
employee emp2 = empl;

cout << "Employee Information:" << endl|;

cout << M- M << endl
cout << "ID:\t\t" << empl.id << endl;

cout << "Name:\t\t" << empl.name << end|;
cout << "Salary:\t\t" << empl.salary<< endl;
cout << "Address:\t" <<empl.address << endl;

cout<<" "<<endl;

S yaiall 8 J V) il il sina fesy

cout << "Employee 2:" << endl;

cout << " " << endl;
cout << "ID:\t\t" << emp2.id << end|;

cout << "Name:\t\t" << emp2.name << endl;
cout << "Salary:\t\t" << emp2.salary<< endl;
cout << "Address:\t" << emp2.address << end|;

return 0;

}

DA'I'A STRUCTURE
CJ -

Queue
Lecture 9

Output of the Previous Program

Employee 1:

ID:
Name:
Salary:
Address:

Employee 2:

Queue DATA sTRucwni
Lecture 9 UL’L’J

Your Task

Write a C++ Program to Store Information (name, Stage and marks) of a Student
Using Structure and Display store information.

Queue 'y DA'I'AS'I'RUCTURE
Lecture 9 UL’L’J CJ-SLIB

Recursion

Queue DA'I'A sTRUCTURi
Lecture 9 UL’

Recursive Solutions

» Recursion breaks a problem into smaller identical problems
- mirror images so to speak.

» By continuing to do this, eventually the new problem will be
so small that its solution will be either obvious or known -
this is known as the base case or degenerate case.

» Recursion is an alternative to iteration.
» Some recursive solutions are inefficient and impractical and

iteration i r. ;
teratio s bette el) Sla 1)) A S pom — Al el JSUIe) ASGl) oy clediud) o) o
o}g@y\gzwaﬂw\g@qg\m‘u\@m:“‘gﬂmegﬁ\@)\fhwdmwj .
By saaiall Al o Aala) AL oyt La 13 g — B g e of ial g Leda
DS by s clediul) e
il Sl g dee g g Aad ye eledinl) Jodall (oany

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

Recursive Solutions (Cont’d)

» Recursion sometimes provides elegantly simple solutions to

very complex problems.

» A binary search is a good example of a problem solving

approach that can be naturally accomplished using recursion.

» This is a divide and conquer approach.

Al 3aaa JSLEA) dapl o ddages I sla Blal cledia¥) jisy o
IS o el Sy (A SN Ja gl 1am Ylie LN Canll 2ay o

Queue DATA STRUCTURE
Lecture 9 UL’L’J

Observations with Respect to a Recursive Method

1. One of the actions of the method is to invoke (call) itself.

2. Each call passes a smaller version of the same problem, i.e., the new problem is identical
in nature but smaller is size.

3. The method must contain a test for the base case since that case is handled differently
from the others. When you reach the base case the recursive calls stop.

4. The manner in which the size of the problem diminishes must ensure that the base case is
reached.
Lgads (sledinl) eledivl sa 43kl el) aal)
Laaa jral LSl ginpda 8 ddlaie saaad) G () ol GAlSEal) (i (e sl dai cledinl Alae JS)50)
g Al A) Jga gl ie 5 AY) cVA e caline JSE Leae Jalal) a3 Allall sda Y 15080 Al Al jlas) e 38kl g iad o sy)
S Clele xiuy)
Al A 1) J e ol A0S s 65 Ly oy 3 Ay lall el o my)

Queue

DA'I'A STRUCTURE
Lecture 9 UL’

Recursion vs. lteration

Repetition

o |teration: explicit loop sy 4dla

o Recursion: repeated function calls 3,8 dixe dika 5 o xis
Termination

o |teration: loop condition fails

o Recursion: base case recognized auluy) Al e s sl
Both can have infinite loops

Storage

° recursion use stack to give answer. Recursive programs typically use a large amount of computer memory
and the greater the recursion, the more memory used.

o A recursively written method can be simpler, but will usually run slower and use more storage than an

equivalent iterative version
(Sl) Sl JlaaY) (e ST o 5a0 Aalise aasii s Uail JS0 Jend Lo Bale Sl canl) S JS00 4 Sl 43y plall 055 of oSy o

Balance
o Choice between performance (iteration) and good software engineering (recursion)

(sle i) 3ol Lpaa) dsnig 5 (LIS £1aY) cp SLaaY)

Queue
Lecture 9

A Recursive Valued Method:

The Factorial of n

» Problem
o Compute the factorial of an integer n

» An iterative definition of factorial(n)

factorial(n) = n * (n-1) * (n-2) *
for any integer n > O
factorial(0) = 1

DA'I'A STRUCTURE

bl

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

A Recursive Valued Method:
The Factorial of n

» A recursive definition of factorial(n)
factorial(n) = 1 ifn=0
n * factorial(n-1) ifn>0
» A recurrence relation
- A mathematical formula that generates the terms in a sequence from

previous terms ALl lallaadl (o Julud (& Clallaad) Al 5 dual) pa
o Example
factorlal(n) =n*[(n-1) *(n-2) * 1]

* factorial(n-1)

Queue DATA sTRUCTURi
Lecture 9 UL’L’J

fact (4)
4 *fact (3) 6
N
Y
fact (3)
3 *fact (2) 5
\\
fact (2)

2*fact(1) —--- 1
. \
N4

fact (1)

Queue _ DATA STRUCTURE
Lecture 9 UL’L’J

'44

3 using namespace std;
<

S int fact(int x

&

7 if (x<=1)

8 return 1;

S else

10 return x*fact(x-1); ———
12

13

14
15
16
17 int main()

19 out<< fact(s):
20 return O;

o
(]

Queue
Lecture 9 CJ

DATASTRUCTURE

main.cpp

in b W N

()

using namespace sta;

void fi(int n)

i C\Users\n Jocuments\codeblock\rec\bin\Debug\rec.exe

if(n
return
else
for(int i=0;i<n;i++

mamn

fi(n-

returned © (©x0)

to continue.

int main()

f;lil;

Thank You
&
Good luck

