
Prepared & Presented by

Mohammed B. Omar

2023 -2024

Lecture 8 :

Queue

College of computer science & mathematics

Dep. Of Computer Science

2

Definition of Queue
Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue) and

the other is used to remove data (dequeue).

Queue follows First-In-First-Out methodology, i.e., the data item stored first will

be accessed first.

Queue

Lecture 8

ONE WAY First In
First Out

Last in
Last out

2

Definition of Queue
Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue) and

the other is used to remove data (dequeue).

Queue follows First-In-First-Out methodology, i.e., the data item stored first will

be accessed first.

Queue

Lecture 8

ONE WAY First In
First Out

Last in
Last out

2

Queue
Queue is a linear data structure.

• It is used for temporary storage of data values.

• A new element is added at one end called rear end.

• The existing elements deleted from the: front end.

Queue

Lecture 8

Queue. Similarly, 10 would be the first element to get removed and 80 would be the last element to get

removed.

2

1.Insertion :
Placing an item in a queue is called “insertion or enqueue”, which is done at the end

of the queue called “rear”.

Queue

Lecture 8

Front

Rear

2

2.Deletion :
Removing an item from a queue is called “deletion or dequeue” , which is done at

the other end of the queue called “front”.

Queue

Lecture 8

Front

Rear

2

Basic operations in Queue
Two basic operation:

enqueue() − add (store) an item to the queue.

dequeue() − remove (access) an item from the queue.

Functions are required to make the above-mentioned queue operation efficient.

These are −

peek() − Gets the element at the front of the queue without removing it.

isfull() − Checks if the queue is full.

isempty() − Checks if the queue is empty.

Queue

Lecture 8

2

Basic operations in Queue
Enqueue

Queues maintain two data pointers, front and rear.

Therefore, its operations are comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty

space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − return success.

Queue

Lecture 8

2

Basic operations in Queue

Queue

Lecture 8

2

Basic operations in Queue

Queue

Lecture 8

Algorithm:

If Queue is Full

Then Overflow  True

Else

Overflow  False

Rear  Rear + 1

Queue [Rear]  New element

Enqueue

2

Basic operations in Queue
Dequeue

Accessing data from the queue is a process of two tasks access the data where front is

pointing and remove the data after access.

The following steps are taken to perform dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Queue

Lecture 8

2

Basic operations in Queue

Queue

Lecture 8

2

Basic operations in Queue

Queue

Lecture 8

Algorithm:

If Queue is Empty

Then Underflow  True

Else

Underflow  False

Element  Queue[front]

Front  Front + 1

Dequeue

2

Basic operations in Queue
peek()

This function helps to see the data at the front of the queue.

The algorithm of peek() function is as follows −

Algorithm

begin procedure peek

return queue[front]

end procedure

Implementation of peek() function :

Example

int peek()

{

return queue[front];

}

Queue

Lecture 8

2

Basic operations in Queue
isfull()

In Queue have to check the rear pointer to reach at MAXSIZE to determine that

the queue is full.

Algorithm:

If Rear = (size -1)

Then FullQueue True

Else FullQueue False

Queue

Lecture 8

2

Basic operations in Queue
isempty()

If the value of front is less than 0, it tells that the queue is not yet initialized, hence

empty.

Algorithm:

If Front = -1

Then EmptyQueue True

Else EmptyQueue False

Queue

Lecture 8

2

Basic operations in Queue

Queue

Lecture 8

It is clear from the above figures that whenever we
insert an element in the queue, the value of Rear is
incremented by one i.e.
Rear = Rear + 1
Also, during the insertion of the first element in the
queue we always incremented the Front by one i.e.
Front = Front + 1
Afterwards the Front will not be changed during the
entire operation.

2

Basic operations in Queue

Queue

Lecture 8

The following figures show queue graphically
during deletion operation:

Fig. 2(e) One Element (20) Deleted from Frontthat whenever an element is removed from the
queue, the value of Front is incremented by one
i.e.,
Front = Front + 1

Now, if we insert any element in the queue, the
queue will look like:

2

Basic operations in Queue

Queue

Lecture 8

(1) Algorithm for Insertion in a Linear Queue

Let QUEUE[MAXSIZE] is an array for implementing the Linear Queue & NUM is the element to be inserted in linear

queue, FRONT represents the index number of the element at the beginning of the queue and REAR represents the

index number of the element at the end of the Queue.

Step 1 :If REAR = (maxsize –1) : then
Write : “Queue Overflow” and return
[End of If structure]
Step 2 : Read NUM to be inserted in Linear Queue.
Step 3 : Set REAR = REAR + 1
Step 4 : Set QUEUE[REAR] = NUM
Step 5 : If FRONT = –1 : then Set FRONT=0.
[End of If structure]
Step 6 : Exit

2

Basic operations in Queue

Queue

Lecture 8

Function for insert element in a linear queue (using arrays) in c++

void enqueue (int NUM)

{

if (rear == maxsize –1)

cout<<"Queue is full \n";

else

{

if(front == -1)

front = 0;

rear++;

A[rear] = value;

}

}

2

Basic operations in Queue

Queue

Lecture 8

void enqueue () {

int val;

if (rear == n - 1)

cout<<"Queue Overflow"<<endl;

else {

front = 0;

cout<<" insert value in the queue : "<<endl;

cin>>val;

rear++;

queue[rear] = val;

}

}

2

Basic operations in Queue

Queue

Lecture 8

(2) Algorithm for Delete element from a Linear Queue
Let QUEUE[MAXSIZE] is an array for implementing the Linear Queue & NUM is the element to be deleted from
linear queue, FRONT represents the index number of the element at the beginning of the queue and REAR represents
the index number of the element at the end of the Queue.

Step 1 : If FRONT = -1 : then
Write : “Queue Underflow” and return
[End of If structure]
Step 2 : Set NUM := QUEUE[FRONT]
Step 3 : Write “Deleted item is : ”, NUM
Step 4 : Set FRONT = FRONT + 1.
Step 5 : If FRONT>REAR : then
Set FRONT = REAR = -1.
[End of If structure]
Step 6 : Exit

2

Basic operations in Queue

Queue

Lecture 8

Function for delete element from linear queue (using arrays) in c++
void Delete()
{
if (front == - 1)
{
cout<<"Queue Underflow ";
return ;
}
else
{
cout<<"Element deleted from queue is : "<<queue[front];
front++;;
}
}

2

Basic operations in Queue

Queue

Lecture 8

Function of display Queue in C++
void Display_Queue ()
{
if (front == - 1)
cout<<"Queue is empty";
else {
cout<<"Queue elements are : ";
for (int i = front; i <= rear;
i++)
cout<<queue[i]<<" ";
}
}

2

Basic operations in Queue

Queue

Lecture 8

Function to check if queue is empty

bool isempty()
{
if(front == -1 && rear == -1)
return true;
else
return false;
}

2

Queue Data Structure

Queue

Lecture 8

Array Queue

0 1 2 3 4 99

Max Size = 100

Rear = 70front = 50

Elements of the queue 50,51,52,…………..70

2

Queue Data Structure

Queue

Lecture 8

Array Queue

0 1 2 3 4 99

Max Size = 100

front = 99rear = 5

Elements of the queue 99,0,1,2,3,4,5

2

Queue Data Structure

Queue

Lecture 8

Array Queue

0 1 2 3 4 14

Max Size = 15

front = 13rear = 2

Rear pointer point in the =2 13,14,0,1,2

count= 5

because the account are have five elements, and the front pointer point in 13 that is means are being counted from
13,14,0,1,2 for just five elements.

2

Queue Data Structure

Queue

Lecture 8

Array Queue

0 1 2 3 4 99

Max Size = 100

front = 99
rear = 3

Elements of the queue 99,0,1,2,3

Count = ?

Count = 5

2

Queue Data Structure

Queue

Lecture 8

PC1

PC2

PC3

Request Request

Request

2

Queue Data Structure

Queue

Lecture 8

service center

First Call

Thank You
&

Good luck

