
Prepared & Presented by

Mohammed B. Omar

2023 -2024

Lecture 8 :
Linked KistCollege of computer science & mathematics

Dep. Of Computer Science

2

Queue

Lecture 9

2

Linked List

Lecture 9

• A linked list is a linear collection of data elements called nodes where linear order is given by means of pointers.

• Like arrays, Linked List is a linear data structure.
• Unlike arrays, Linked list elements are not stored at a contiguous location; the elements

are linked using pointers.

• Collection of links with reference to the first.

Each link has
• part to store data
• link that refers to the next link in the list.

• Data part of the link can be an integer, a character, a String or an object of any kind.

2

Linked List

Lecture 9

• Each node has two parts

1) Data Field – Stores data of the node
2) Link Field – Store address of the next node (i.e. Link to the next node)

LINK

DATA

NODE :

2

Lecture 9

Linked List

- START is List pointer contains address of the first node in the List.

- All nodes are connected to each other through Link fields.

- Link of the last node is NULL pointer denoted by ‘X’ sign.

- Null pointer indicated end of the list.

linkdata

A B C D

x

linklink linkData datadata

start

Linked Lists

2

Lecture 9

Linked List

struct Node // name of node

{

char name[20]; // Name of up to 20 letters

int age; // D.O.B. would be better

float height; // In meters

Node *next; // Pointer to next node

};

Node *start_ptr = NULL; // Start Pointer (root)

struct nodeType

{

int info;

nodeType *link;

};
//The variable declaration is as follows:

nodeType *head=NULL;

Declaration

2

Linked List

Lecture 9

ADVANTAGES AND DISADVANTAGES

 Linked list have many advantages and some of them are:

1. Linked list are dynamic data structure. That is, they can grow or shrink during the execution of a

program.

2. Efficient memory utilization: In linked list (or dynamic) representation,

3. memory is not pre-allocated. Memory is allocated whenever it is required. And it is deallocated

(or removed) when it is not needed.

4. Insertion and deletion are easier and efficient. Linked list provides flexibility in inserting a data

item at a specified position and deletion of a data item from the given position. Many complex

applications can be easily carried out with linked list.

2

Linked List

Lecture 9

 Linked list has following disadvantages

1. More memory: to store an integer number, a node with integer data and

address field is allocated. That is more memory space is needed.

2. Access to an arbitrary data item is little bit cumbersome and also time

consuming.

.يعد الوصول إلى عنصر بيانات أصعب ويستغرق وقت

2

Lecture 9

Linked List

Linked Lists: some properties

2

Linked List

Lecture 9

 current = head ;

copies the value of head into current .

Value

Current 2000

Current −> info 17

Current −> link 2800

Current −> link −> info 92

2

Linked List

Lecture 9

 current = current −>link ;

Value
Current 2800
Current −> info 92
Current −> link 1500
Current −> link −> info 63
head−> link −>link 1500
head−>link−>link−>info 63
head−>link−>link−>link 3600
head−>link−>link−>link−>info 45
current−> link −>link 3600
current−>link−>link−>info 45
current−>link−>link−>link 0(that is NULL)
Current −>link−>link−>link−>info Does not exist

2

Lecture 9

Linked List

current = head;

while (current != NULL)

{

//Process current

current = current->link;

}

The following code traverses the list:

2

Linked List

Lecture 9

current = head;

while (current != NULL)

{

cout << current->info << " ";

current = current->link;

}

The following code outputs the data stored in each
node:

2

Linked List

Lecture 9

 Insertion
1-First node
2-In beginning
3-In end
4-In middle

 Deletion
1-from beginning
2-from end
3-from middle

Basic Operations on SLL

2

Lecture 9

Linked List

We will use the following variable declaration:

nodeType *head, *p, *q, *newNode;

Consider the linked list shown in Figure

INSERTION

2

Lecture 9

Linked List

newNode = new nodeType; //create newNode

newNode->info = 50; //store 50 in the new node

newNode->link = p->link;

p->link = newNode;

2

Linked List

Lecture 9

2

Linked List

Lecture 9

newNode->link = p->link; //correct sequence

p->link = newNode;

Suppose that we reverse the sequence of the statements and execute the statements in the
following order:

p->link = newNode; // failed sequence
newNode->link = p->link;

2

Lecture 9

Linked List

The following statements insert newNode between p and q:

newNode->link = q;
p->link = newNode;

suppose that we execute the statements in the following order:

p->link = newNode;
newNode->link = q

2

Lecture 9

Linked List

2

Linked List

Lecture 9

DELETION
 Consider the linked list shown in Figure

 Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list: حذف العقدة مع بقاءها في الذاكرة بموقع محجوز

 p->link = p->link->link;

2

Linked List

Lecture 9

 The following statements delete the node from the list and deallocate the memory
occupied by this node: الطريقة الأصح للحذف

q = p->link;

p->link = q->link;

delete q;

2

Lecture 9

Linked List

2

Lecture 9

Linked List

Algorithms

 Lets consider,

• START is the 1st position in Linked List

• NewNode is the new node to be created

• DATA is the element to be inserted in new node

• POS is the position where the new node to be inserted

• TEMP and HOLD are temporary pointers to hold the node address

2

Linked List

Lecture 9

Algorithm to Insert a Node at the beginning
1. Input DATA to be inserted

2. Create NewNode

3. NewNode -> DATA = DATA

4. If START is equal to NULL //list empty

a) NewNode -> LINK = NULL

5. Else

a) NewNode -> LINK = START

6. START = NewNode

7. Exit

x
linklink linkdatadatadata

start

NewNode

2

Linked List

Lecture 9

Insert a Node at the beginning

x

linklink linkdatadatadata

start

NewNode

2

Lecture 9

Linked List

Algorithm to Insert a Node at the end
1. Input DATA to be inserted

2. Create NewNode

3. NewNode -> DATA = DATA

4. NewNode -> LINK = NULL

5. If START is equal to NULL

a) START = NewNode

6. Else

a) TEMP = START

b) while (TEMP -> LINK not equal to NULL)

i) TEMP = TEMP -> LINK

7. TEMP -> Link = NewNode

8. Exit

2

Lecture 9

Linked List

Insert a Node at the end

linkdata

A B C

linklink datadata

start

P

X

NewNode

TEMP

2

Lecture 9

Linked List

Algorithm to Insert a Node at any specified position
1. Input DATA to be inserted and POS, the position to be inserted.
2. Initialize TEMP = START and K=1
3. Repeat step 3 while (K is less than POS)

a) TEMP = TEMP -> LINK
b) If TEMP -> LINK = NULL

i) Exit
c) K = K + 1

4. Create a Newnode
5. Newnode -> DATA = DATA
6. Newnode -> LINK = TEMP -> LINK
7. TEMP -> LINK = NewNode
8. Exit

2

Linked List

Lecture 9

Insert a Node at middle position

P

linkdata

A B

C

D

x

linklink linkdatadatadata

start

NewNode

4321

Lets consider, POS = 3

2

Lecture 9

Linked List

Algorithm to Delete the first Node

void DeleteFront(void)
{

Linked_List *Element;
if(List==NULL)
cout<<"\t\t* You can not Delete, Linked List is Empty *\n";

else {
Element = List;
List = List ->next;
delete Element;
}

}

2

Lecture 9

Linked List

Algorithm to Delete the first Node

linkdata

A B C D

x

linklink linkdatadatadata

Node to be deleted
List

Elements

2

Linked List

Lecture 9

Algorithm to Delete the last Node
void delete_last()
{

Linked_List *p, *q;
p=start;
If (p-> link ==NULL)

{
delete p;
start=NULL;
}
else

{
while(p-> link != NULL)

{
q=p;
p= p-> link ;

}
q-> link=NULL;
delete p;
} }

2

Linked List

Lecture 9

Algorithm to Delete the last Node

linkdata

A B C D

x

linklink linkdatadatadata

start

p

q

linkdata

A

start

p

q
x

If (p-> link ==NULL)
{

delete p;
start=NULL;
}

linkdata

A

start

p

q
x

while(p-> link != NULL)
{

q=p;
p= p-> link ;

}
q-> link=NULL;
delete p;

2

Lecture 9

Linked List

Algorithm to Delete a Node with a specified value
void DeleteVal(int value)
{
Linked_List *p, *q;
p=List;
while (p-> next != NULL)

{
if(p->number==value)

{
q=p->next;
delete p;
p=q;
}

else {

cout<<" the Value not exist";

}
p=p->next;

}
}

2

Lecture 9

Linked List

Algorithm to Delete a Node

linkdata

A B C D

x

linklink linkdatadatadata

Node to be deleted
list

2

Linked List

Lecture 9

void SortAsc(void)
{
Linked_List *p,*q;
if(List == NULL)

cout<<"\t\t* Linked List is Empty *\n";
else {

p = List;
q = List;
while(p->next!=NULL)

{
q=p->next;
while(q!=NULL)

{
if(q->number < p->number)

{
int s;
s=p->number;

p->number = q->number;
q->number = s;
}

q= q->next;
}
P =p ->next;
}
}
}

Algorithm to sorting a list

2

Linked List

Lecture 9

Algorithm for Searching a Node
Suppose START is the address of the first node in the linked list and DATA is the information to be searched.

1. Input the DATA to be searched.

2. Initialize TEMP = START and Pos =1

3. Repeat the step 4,5 and 6 until (TEMP is equal to NULL) // (while temp!=null)

4. If (TEMP -> DATA is equal to DATA)

(a) Display “The DATA found at POS “

(b) Exit

5. TEMP = TEMP -> LINK

6. POS = POS + 1

7. If (TEMP is equal to NULL) // the data if not find in all list

(a) Display “ The DATA is not found in the list”

8. Exit.

2

Lecture 9

Linked List

Algorithm for Displaying all Nodes
 Suppose List is the address of the first node in the linked list.

1. If (START is equal to NULL)

(a) Display “The List is Empty”

(b) Exit

2. Initialize TEMP = START

3. Repeat the Step 4 and 5 until (TEMP == NULL)

4. Display TEMP -> DATA

5. TEMP = TEMP -> LINK

6. Exit

2

Lecture 9

Linked List

Singly Linked Lists and Arrays

2

Lecture 9

Linked List

Types of Linked List

 One-way linked list

 Two way or doubly linked list

 Circular linked list

 Header linked list

2

Lecture 9

Linked List

1- One Way Linked List (Singly Linked Lists)

One-way linked list is most simple list among all linked lists. It contains data part or info part and address part or link

field. Address part link to the next node in sequence of nodes. It can be traversed only in one direction that is forward

direction. One-way linked list takes less memory because it has only one pointer or address part.

2

Linked List

Lecture 9

2- Two Way Linked List in Data Structure (Doubly Linked List)

A two-way linked list is also known as doubly linked list. Each node in two-

way linked list divided into three parts. Which is data part and two link

fields. Data part contains the info or data of the node. One link field is used

for forward direction which contains the address of its next node, and

second field is used for backward direction which contains the address of

its previous node.

2

Linked List

Lecture 9

As compare to one-way linked list, two-way linked list can traversed in reverse direction with help of

backward link field. Sorting data as two-way link require more time and more time, and now we have two

pointer variables START and LAST, which contains the address of first node and last node.

2

Linked List

Lecture 9

Declaration

Struct dnode

{

Struct dnode *back;

int data;

Struct dnode *forw;

}

In declaration data represent the data field and back and forw represent the two link
fields which contain the address of forward and backward node.

2

Linked List

Lecture 9

3- Circular Linked List

A circular linked list is that in which the last node contains the pointer to

the first node of the list.

2

Linked List

Lecture 9

4- Doubly Circular Linked List

A Doubly Circular linked list or a circular two-way linked list is a more complex type of

linked list that contains a pointer to the next as well as the previous node in the

sequence. The difference between the doubly linked and circular doubly list is the same

as that between a singly linked list and a circular linked list. The circular doubly linked

list does not contain null in the previous field of the first node.

2

Linked List

Lecture 9

Difference between Single Linked list and Double Linked List in Data Structure

Thank You
&

Good luck

