College of computer science & mathematics

Dep. Of Computer Science

DATA STRUCTURE

il JSLa

Lecture 2:

Complexity analysis

Prepared & Presented by

Mohammed B. Omar

2024 -2025

DATA STRUCTURE Clilad) JSba

Algorithms in Computer Science: Definition
Algorithms can be seen as the backbone (s_2ll 2s=ll) of computer science as they form the basis for
creating efficient and effective software programs(iixi s ddle 5L il gal o LY,

They are a set of well-defined rules or instructions used to solve a specific problem.

An algorithm is defined as a sequence of steps that accomplishes a particular task if followed .

Algorithm Meaning
An algorithm in Computer Science is a well-structured, unambiguous(+=asle »¢) and step-by-step set of instructions

used to solve a problem or achieve a certain objective.

(2]

DATA STRUCTURE Clilad) JSba

In addition, every algorithm must satisfy the following criteria.

1. Input: algorithm must take zero or more input.

2. Output: algorithm must produce at least one output

3. Definiteness: The definiteness property insists that each step in the algorithm is unambiguous. A step is said to
be unambiguous if it is clear, in the sense that, the action specified by the step can be performed without any
dilemma/confusion. .)/ilass 51 ()50 5 shaally dasall o) aY) 2w (Kay 40l imay izl 5 CulS 13) g Gl ¥ 5 shaddl o) J&

4. Finiteness:. The finiteness property states that the algorithm must terminate its execution after a finite number
of steps (or after a finite period). That is to say, it should not get into an endless process

5. Effectiveness: Each step must be easily convertible to code.

DATA STRUCTURE Clilad) JSba

Representation of algorithm can written By:-
In natural language (English) / pseudo-code / diagrams (Flow chart) / etc.

Pseudo- code:-

A mixture of natural language and high — level programming concepts that describes the main ideas behind a
generic implementation of a data structure or algorithm. Pseudo-code is more structured than usual language

but less formal than a programming language.
43Sl g Balinal) Aall) cpe IS ST il 3N 3680 Aa) gad) o) cliland) At alad) BT) 5 g A 1) LY Clual AN 5 glal) Alle eyl asalia g dpdal) A3l (e g Sa
REVSRIPH Ve SN E.g.:- Algorithm arrayMax (A, n)

input: An array A sorting n integers s3a3zs4cvb

output: The Maximum element in A
currentMax ¢ A[0]

fori< 1ton-1do

if currentMax < A[i] then currentMax ¢ A[i]
return currentMax

(2]

DATA STRUCTURE Clilad) JSba

What Makes a Good Algorithm?

Suppose you have two possible algorithms or data structures that basically do the same thing; which is
better?

v’ Faster.

v’ Less space.

v’ Easier to code.

v' Easier to maintain.

(2]

Ll JSa

DATA STRUCTURE

Importance of Data Structures in Algorithms

Data structures are crucial (* “«~\s) in the development and implementation of efficient algorithms.

Algorithms utilize data structures to solve computational problems, and choosing the right data structure can

mean the difference between a solution and an optimal solution. A well-chosen data structure can improve an

algorithm's efficiency dramatically.

A Data Structure in Computer Science is a way of organizing and storing data so that operations such as

insertions, deletions, and searches can be done efficiently.

Understanding Algorithm Analysis

Algorithm Analysis is at the heart of computer science, serving as a toolset that allows you to evaluate and

compare the performance of different algorithms in solving specific tasks. (s . s s ctn a0 ey sty o e 0,9 e ane 12)

[3] |

DATA STRUCTURE Clilad) JSba

Measure Algorithm Efficiency
Space utilization: amount of memory required.

Time efficiency: amount of time required to accomplish the task.

As space is not a problem nowadays
> Time efficiency is more emphasized.

o But, in embedded computers or sensor nodes, space efficiency is still important.

(4] |

DATA STRUCTURE Clilad) JSba

COMPLEXITY ANALYSIS

To gain a more detailed understanding of the complexity analysis, let's examine its types:

% Time Complexity: This examines the total amount of time an algorithm takes to run as a

function of the size of its input.

% Space Complexity: This analyses the amount of memory an algorithm uses concerning the
size of its input.

For Example

Sa Uaall gk e JUas a8 cagetll Jilaty olid jeo A8)5k UL e Al duaS Aallaal dua) sa SLA) 3 Jiaiall gasill as) g elif g il

Ao g ety el Al eyl a JLEA) 8 gy of Akl (e dagh sl Jilady il e Y1 (o) bl s 55 e S UK Ly

ela¥ 5 bl datlag

[5] |

DATA STRUCTURE Clilad) JSba

Big O notation: is the language we use for talking about how long an algorithm takes to run.
It's how we compare the efficiency of different approaches to a problem. It is used in
Computer Science to describe the performance or complexity of an algorithm. Big O
specifically describes the worst-case scenario, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an algorithm.

Note
Imagine you have a list of 10 objects, and you want to sort them in order There’s a whole

bunch of algorithms you can use to make that happen, but not all algorithms are built equal.

It is simply a way of comparing algorithms and how long they will take to run.

Note

< O :order

o) ¢ gl Jay il LS g o &I phll gl ala g N)y LS oo

(7] |

DATA STRUCTURE Clilad) JSba

Key Concepts in Algorithm Analysis
To begin, it's vital to understand basic terminologies involved in algorithm analysis.

R

» Big O Notation: This notation describes an upper bound of the complexity of an algorithm. It provides an
approximation of the maximum time taken by an algorithm for all input sizes.

+* Big Q Notation: This notation describes a lower bound of the complexity, determining the minimum time
required by an algorithm.

» Big © Notation: This notation characterizes both the upper and lower bounds of the complexity. It denotes the
exact asymptotic behavior. -

B g Uals) o 5
% Asymptotic Analysis: (i) Judaill) This is the method of describing limiting behavior and often ties in closely

with the aforementioned notations.

Big O, big Q, and big © Notation are analytical tools (4:lai < g31) used to describe an algorithm's efficiency as

the size of its input approaches infinity. sig 0 sbig 0 shig @ Al (a Lsdiss aaa s Lasic Lua i s 5oUiS Ciua gl a3k Ayl il g3 4

(4] |

DATA STRUCTURE

bl JSLa

General Rules

> lgnore constants (Considers long term growth only)
5n becomes O(n)
> Terms are dominated by others
>»0(1) < O(logn) < O(n) < O(nlogn) < O(n?) < O(2") < O(n!)

Big O — Notation
f(n): 6n2+ 100n + 300 O(n2)

f(n): 2n2+ 150n + 330 O(n?) O(n2)
f(n): 2n3+ 3n2+ 100n O(n3)
f(n): 4log,(n) + 40 O(log,(n))

* Used to measure the performance of any algorithm.
* By providing the order of growth of the function.

(4] |

DATA STRUCTURE Clilad) JSba

0(1)
°0(1) describes an algorithm that will always execute in the same time (or space) regardless of the size of the input data
set.
O(N)
> O(N) describes an algorithm whose performance will grow linearly and in direct proportion to the
size of the input data set.
° Big O notation will always assume the upper limit where the algorithm will
perform the maximum number of iterations.
O(N?)
> O(N?2) represents an algorithm whose performance is directly proportional
to the square of the size of the input data set.
° This is common with algorithms that involve nested iterations over the data set.

o Deeper nested iterations will result in O(N3), O(N?) etc.

(4] |

DATA STRUCTURE Clilad) JSba

o(2V)
> O(2V) denotes an algorithm whose growth doubles with each addition to the input data set.
> An example of an O(2N) function is the recursive calculation of Fibonacci numbers.
O(log N).
o The iterative halving of data sets described in the binary search example produces a growth curve that peaks at the
beginning and slowly flattens out as the size of the data sets increase.
o e.g. an input data set containing 10 items takes one second to complete, a data set containing 100 items takes two

seconds, and a data set containing 1000 items will take three seconds.

(4] |

DATA STRUCTURE Gl JSLa
constant | logarithmic | linear | N-log-N |quadratic| cubic | exponential
O(n log

n| O1) | OQogn) | On) n) omn?) | o@d) o@2n
1 1 1 1 1 1 1 2
2 1 1 2 2 1 8 1
4 1 2 4 8 16 64 16
8 1 3 8 24 64 512 256
16 1 4 16 64 256| 4,096 65536
32 1 = 32 160 1.024| 32.768|4,294.967.296
64 1 6| 64 384 4,069(262,144| 1.84x 107

(4] |

DATA STRUCTURE Clilad) JSba

COMPLEXITY ANALYSIS

Example : Search for a specific element within the following array?

o 2] s |z [20] %)

1. There is an algorithm that will work a certain way to search for the item.

2. | can find the element in the first place and this is called (Best Case) or (Lower bound).
3. |l can find the element in the last place and this is called (Worst Case) or (Upper bound).

4. | can find the element in the middle place and this is called (Average Case). or (Tight bound)

Best Case Omega Notation
Average Case Theta Notation
[Worst Case Big O Notation] S:trt:?cus on the worst cases to address them for the

(6] |

DATA STRUCTURE Clibll JSba

O(2r) O(n?) Oln log n)
A /ﬂ
//
Q
£
- - O(n)
s
[
a
o
=
oo
]
—> Oflog n)
> 0(1)
>

input size (n)

0] |

DATA STRUCTURE ULl JSba
Rules:
Int X; no computation
Inty = 4; Computation
Example
Public Void max (int a, int b) no computation
{ no computation
AN AN
\OZEE Ny A
e T SN A Computation
— N\ A \j!\
} no computation

1] |

DATA STRUCTURE Clilad) JSba

Rules: FOR

Lpleall 40 il o 58

Example: n
. Z . n(n+1)
Write method to calculate ‘~ by using >
Public int sum (int n) no computation
{ no computation
. . 1+1=2 1> Of1
int total; no computation ()
total = n*(n+1)/2 1
return total; 1 [Note
. | J sy diad 85 sl
} no computation o ey

12] |

DATA STRUCTURE bl J<Ua
Rules: FOR :
Example: . $°&® Rule (For loop) = End of condition — Start condition + 1
Write method to calculate 2
o,

i=1

Public int sum (int n) ——

{ _
int i, total; -
total=0; —_—

for (i=1;i<=n;i++) —

{ s

total =total +i;

} _—
return total; _—
} —_

no computation
no computation
no computation
1
Nn-1+1+1= n+1

no computation

— > N

no computation
1

no computation

1+(n+1)+(n)+1=2n+3 > Ofn)

[13] |

DATA STRUCTURE Clilad) JSba

Rules: FOR
Example: 20
Write method to calculate Z A by using (for)?
i=1
Public int sum () no computation
{ no computation
int i, total ; no computation 1+21+20+1=43 O(1)
total=0 1
for(i=1; i<=20; i++) 20 -1+1+1=21 Note
{ no computation [QAo e s
total = total + |; 20
} no computation
return total; 1
} no computation

(4] |

DATA STRUCTURE

il JSLa

Rules: FOR

Example:

Compute step execution and big O for the following Code?

X=0;
For (1=-2;i<n; i++)
{
X=Xx+1;
y=X+2;
}
System.out.print(x);

n-(-2) +1=n+3

n+2

n+2

1+(n+3) +(n+2) + (n+2) + 1= 3n+9 = O(n)

[15] |

DATA STRUCTURE

Ll JSa

Rules: FOR

Example:

Compute step execution and big (O) for the following Code?

Int func (a[], n)
{
int x=5;
for (I =1; i<=n; i++)
{
ffor(i=1; j<n; j++))
N-1=N _| {
X=X+1+j;
_ s.o.p(x); /
}
}
}

1

Nn-1+1+1 = n+1

Nn-141=n

n-1

1+(n+1l)+n*(n)+n(n-1)+n(n-1)
=1+n+1+n2+n2-n +n% -n
=3n2- n+2

= O nz)

6] |

DATA STRUCTURE

Thank You

&
Good luck

117

