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Big O notation: is the language we use for talking about how long

an algorithm takes to run. It's how we compare the efficiency of different
approaches to a problem. It is used in Computer Science to describe the

performance or complexity of an algorithm. Big O specifically describes

the worst-case scenario, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an algorithm.

Imagine you have a list of 10 objects, and you want to sort them in
order. There’s a whole bunch of algorithms you can use to make that
happen, but not all algorithms are built equal.

It is simply a way of comparing algorithms and how long they will take to
run.

.
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A simplified analysis of algorithm efficiency. It considers:

1. Complexity in terms of input size, N.

2. Machine independence(Doesn’t consider the 
machines hardware)

3. Basic computer steps.

4. Time & space(working storage)

O means order of (German: "Ordnung von").

n is the input size in units of bits needed to 

represent the input
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Measure Algorithm Efficiency

Space utilization: amount of memory required.

Time efficiency: amount of time required to 
accomplish the task.

As space is not a problem nowadays
◦ Time efficiency is more emphasized.

◦ But, in embedded computers or sensor nodes, space 
efficiency is still important.
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General Rules

 Ignore constants (Considers long term growth only)
 5n becomes O(n)

 Terms are dominated by others
 O(1) < O(logn) < O(n) < O(nlogn) < O(n2 ) < O(2n) < O(n!)

 Ignore lower order terms
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O(1)
◦ O(1) describes an algorithm that will always execute in the same time (or 

space) regardless of the size of the input data set.

O(N)
◦ O(N) describes an algorithm whose performance will grow linearly and in 

direct proportion to the size of the input data set. 

◦ Big O notation will always assume the upper limit where the algorithm will 
perform the maximum number of iterations.

O(N2)

◦ O(N2) represents an algorithm whose performance is directly proportional 
to the square of the size of the input data set. 

◦ This is common with algorithms that involve nested iterations over the data 
set.

◦ Deeper nested iterations will result in O(N3), O(N4) etc.
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O( 2N )

◦ O( 2N ) denotes an algorithm whose growth doubles with each addition to
the input data set.

◦ An example of an O(2N ) function is the recursive calculation of Fibonacci
numbers.

O(log N).

◦ The iterative halving of data sets described in the binary search example
produces a growth curve that peaks at the beginning and slowly flattens out
as the size of the data sets increase.

◦ e.g. an input data set containing 10 items takes one second to complete, a
data set containing 100 items takes two seconds, and a data set containing
1000 items will take three seconds.
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Time taken per input size

Constant time implies that the number of operations the algorithm needs 
to perform to complete a given task is independent of the input size. 

In Big O notation we use the following O(1).

No matter how much data you add the amount of time to perform a task 
will not change.

Constant Time Algorithms – O(1)

X = 10 + (5 * 2);

Input size(X) is independent

doesn’t matter

◦ doesn’t effect processing of code/algorithm

So it’s O(1)
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X = 10 + (5 * 2);

Y = 20 – 2;

System.out.print(”x + y”);

Total time is = O(1) + O(1) + O(1) = 3 * O(1)

Because we drop constants we would call this code

◦O(1) “Big oh of one”

Constant Time Algorithms – O(1)
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Best, average, worst-case complexity

In some cases, it is important to consider the best, worst and/or average (or 
typical) performance of an algorithm:

 Worst, O(N) or o(N):  or > true function   

 Average, Θ(N):  true function                     

 Best, Ω(N):  true function                          

E.g., when sorting a list into order, if it is already in order then the algorithm may 
have very little work to do

The worst-case analysis gives a bound for all possible input (and may be easier 
to calculate than the average case)
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Best case: In the best-case analysis, we calculate the lower bound on the running
time of an algorithm. We must know the case that causes a minimum number of
operations to be executed. In the linear search problem, the best case occurs when x
is present at the first location. The number of operations in the best case is constant
(not dependent on n). So time complexity in the best case would be Ω(1).

Worst case: In the worst-case analysis, we calculate the upper bound on the
running time of an algorithm. We must know the case that causes a maximum
number of operations to be executed. For Linear Search, the worst case happens
when the element to be searched (x) is not present in the array. When x is not
present, the search() function compares it with all the elements of arr[] one by one.
Therefore, the worst-case time complexity of the linear search would be O(n).

average case: In average case analysis, we take all possible inputs and calculate the
computing time for all of the inputs. Sum all the calculated values and divide the
sum by the total number of inputs.



12

How do we calculate big-O?

1 Loops

2 Nested loops

3 Consecutive statements

4 If-then-else statements

5 Logarithmic complexity

Five guidelines for finding out the time complexity of a piece of code
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Guideline 1: Loops

The running time of a loop is, at most, the running time of the 

statements inside the loop (including tests) multiplied by the number 

of iterations.

for (i=1; i<=n; i++)
{

m = m + 2;
}

constant time

executed
n times

Total time = a constant c * n = c n = O(N )
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Guideline 2: Nested loops

Analyse inside out. Total running time is the product of the 

sizes of all the loops.

for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {

k = k+1;
}

} constant time

outer loop
executed
n times

inner loop
executed
n times

Total time = c * n * n * = cn2 = O(N 2)
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Guideline 3: Consecutive statements

Add the time complexities of each statement.

Total time = c0 + c1n + c2n
2 = O(N 2)

x = x +1;
for (i=1; i<=n; i++) {

m = m + 2;
}
for (i=1; i<=n; i++)  {

for (j=1; j<=n; j++) {
k = k+1;

}
}

inner loop
executed
n times

outer loop
executed
n times constant time

executed
n times

constant time

constant time
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Guideline 4: If-then-else statements

Worst-case running time: the test, plus either the then part or the 
else part (whichever is the larger).

if (depth( ) != otherStack.depth( ) ) {
return false;

}
else {

for (int n = 0; n < depth( ); n++) {
if (!list[n].equals(otherStack.list[n]))

return false;
}

}

then part:
constant

else part:
(constant +
constant) * n

test:
constant

another if :
constant + 
constant
(no else part)

Total time = c0 + c1 + (c2 + c3) * n = O(N )



17

Guideline 5: Logarithmic complexity

An algorithm is O(log N ) if it takes a constant time to cut the problem 
size by a fraction (usually by ½)

Example algorithm (binary search):

finding a word in a dictionary of n pages

• Look at the center point in the dictionary
• Is word to left or right of center?
• Repeat process with left or right part of dictionary until the word is found
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Logarithmic Time Algorithms – O(log n)

Logarithmic time implies that an
algorithms run time is proportional to the
logarithm of the input size. In Big O
notation this is usually represented as
O(log n).

Next fastest after constant time

Any code that involves a divide and 
conquer strategy

Binary search algorithm is O(log n)
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Examples - Constant Time Algorithms – O(1)

Consider this simple piece of code:
int n = 1000;
System.out.println("Hey - your input is: " + n);
Clearly, it doesn't matter what n is, above. This piece of code takes a constant 
amount of time to run. It's not dependent on the size of n.

The above example is also constant time. Even if it takes 3 times as long to run,
it doesn't depend on the size of the input, n. We denote constant time
algorithms as follows: O(1). Note that O(2), O(3) or even O(1000) would mean
the same thing. We don't care about exactly how long it takes to run, only that it
takes constant time.

Similarly:
int n = 1000; 
System.out.println("Hey - your input is: " + n); 
System.out.println("Hmm.. I'm doing more stuff with: " + n);
System.out.println("And more: " + n);

ex1

ex2
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for (int i = 0; i < n; i++) {
System.out.println("Hey - I'm busy looking at: " + i);
System.out.println("Hmm.. Let's have another look at: " + i);
System.out.println("And another: " + i);

}
The runtime would still be linear in the size of its input, n. We denote linear 
algorithms as follows: O(n).

for (int i = 0; i < n; i++) {
System.out.println("Hey - I'm busy looking at: " + i);
System.out.println("Hmm.. Let's have another look at: " + i);
System.out.println("And another: " + i);

}

The runtime would still be linear in the size of its input, n. We denote linear 

algorithms as follows: O(n).

Examples - Linear Time Algorithms – O(n)

ex1

ex2
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for (int i = 1; i < n; i = i * 2){
System.out.println("Hey - I'm busy looking at: " + i);

}
If n is 8, the output will be the following:
Hey - I'm busy looking at: 1
Hey - I'm busy looking at: 2
Hey - I'm busy looking at: 4
Our simple algorithm ran log(8) = 3 times. = log (n)

for (int i = 1; i <= n; i++){
for(int j = 1; j < n; j = j * 2) {

System.out.println("Hey - I'm busy looking at: " + i + " and " + j);
}

}
For example, if the n is 8, then this algorithm will run 8 * log(8) = 8 * 3 = 24 
times. Whether we have strict inequality or not in the for loop is irrelevant for 
the sake of a Big O Notation= O(n log n)

Examples - Logarithmic Time Algorithms – O(log n),O(n log n)

ex1

ex2
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