Lecture Six

Topics that must be covered in this lecture:

- Single-Source Shortest Path Problem
- Heuristic search: (Dijkstra's algorithm)
- Dijkstra's algorithm Pseudocode
- Dijkstra algorithm Example1
- Dijkstra algorithm Example2
- Dijkstra algorithm Example3

<u>Single-Source Shortest Path Problem</u>: - The problem of finding shortest paths from a source vertex v to all other vertices in the graph.

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Input: A weighted graph $G = \{E, V\}$ and source vertex $v \in V$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex $v \in V$ to all other vertices

Dijkstra's algorithm - Pseudocode

```
dist[s] \leftarrow o
                                     (distance to source vertex is zero)
for all v \in V - \{s\}
    do dist[v] \leftarrow \infty
                                     (set all other distances to infinity)
S-Ø
                                     (S, the set of visited vertices is initially empty)
                                     (Q, the queue initially contains all vertices)
O-V
while Q≠Ø
                                     (while the queue is not empty)
                                     (select the element of Q with the min. distance)
do u \leftarrow mindistance(O,dist)
   S←SU{u}
                                     (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                       (if new shortest path found)
                then
                        d[v] \leftarrow d[u] + w(u, v)
                                                       (set new value of shortest path)
                  (if desired, add traceback code)
return dist
```

Dijkstra algorithm Example1:

<u>Dijkstra algorithm Example 2</u>: Find the shortest path from s to t.

<u>Dijkstra algorithm Example 3</u>: For a given source vertex (node) in the graph, the algorithm can be used to find the shortest path <u>from a single starting vertex to a single destination vertex.</u>

For example, if the vertices of the graph represent cities and edge path costs represent driving distances between pairs of cities connected by a direct road, Dijkstra's algorithm can be used to find the shortest route between one city (a) and the destination city (b).

